nyanko7 commited on
Commit
915f4ae
1 Parent(s): d55005b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +879 -0
app.py ADDED
@@ -0,0 +1,879 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dataclasses import dataclass
3
+
4
+ import gradio as gr
5
+ import torch
6
+ from PIL import Image
7
+ from torchvision import transforms
8
+ from dataclasses import dataclass
9
+ import math
10
+ from typing import Callable
11
+
12
+ from tqdm import tqdm
13
+ import bitsandbytes as bnb
14
+ from bitsandbytes.nn.modules import Params4bit, QuantState
15
+
16
+
17
+ import torch
18
+ import random
19
+ from einops import rearrange, repeat
20
+ from diffusers import AutoencoderKL
21
+ from torch import Tensor, nn
22
+ from transformers import CLIPTextModel, CLIPTokenizer
23
+ from transformers import T5EncoderModel, T5Tokenizer
24
+ from safetensors.torch import load_file
25
+ from optimum.quanto import freeze, qfloat8, quantize
26
+
27
+
28
+ # ---------------- Encoders ----------------
29
+
30
+
31
+ class HFEmbedder(nn.Module):
32
+ def __init__(self, version: str, max_length: int, **hf_kwargs):
33
+ super().__init__()
34
+ self.is_clip = version.startswith("openai")
35
+ self.max_length = max_length
36
+ self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
37
+
38
+ if self.is_clip:
39
+ self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
40
+ self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
41
+ else:
42
+ self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
43
+ self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
44
+
45
+ self.hf_module = self.hf_module.eval().requires_grad_(False)
46
+
47
+ def forward(self, text: list[str]) -> Tensor:
48
+ batch_encoding = self.tokenizer(
49
+ text,
50
+ truncation=True,
51
+ max_length=self.max_length,
52
+ return_length=False,
53
+ return_overflowing_tokens=False,
54
+ padding="max_length",
55
+ return_tensors="pt",
56
+ )
57
+
58
+ outputs = self.hf_module(
59
+ input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
60
+ attention_mask=None,
61
+ output_hidden_states=False,
62
+ )
63
+ return outputs[self.output_key]
64
+
65
+
66
+ device = "cuda"
67
+ t5 = HFEmbedder("google/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
68
+ clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
69
+ ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
70
+ quantize(t5, weights=qfloat8)
71
+ freeze(t5)
72
+
73
+
74
+ # ---------------- NF4 ----------------
75
+
76
+
77
+ def functional_linear_4bits(x, weight, bias):
78
+ out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
79
+ out = out.to(x)
80
+ return out
81
+
82
+
83
+ def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
84
+ if state is None:
85
+ return None
86
+
87
+ device = device or state.absmax.device
88
+
89
+ state2 = (
90
+ QuantState(
91
+ absmax=state.state2.absmax.to(device),
92
+ shape=state.state2.shape,
93
+ code=state.state2.code.to(device),
94
+ blocksize=state.state2.blocksize,
95
+ quant_type=state.state2.quant_type,
96
+ dtype=state.state2.dtype,
97
+ )
98
+ if state.nested
99
+ else None
100
+ )
101
+
102
+ return QuantState(
103
+ absmax=state.absmax.to(device),
104
+ shape=state.shape,
105
+ code=state.code.to(device),
106
+ blocksize=state.blocksize,
107
+ quant_type=state.quant_type,
108
+ dtype=state.dtype,
109
+ offset=state.offset.to(device) if state.nested else None,
110
+ state2=state2,
111
+ )
112
+
113
+
114
+ class ForgeParams4bit(Params4bit):
115
+ def to(self, *args, **kwargs):
116
+ device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
117
+ if device is not None and device.type == "cuda" and not self.bnb_quantized:
118
+ return self._quantize(device)
119
+ else:
120
+ n = ForgeParams4bit(
121
+ torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
122
+ requires_grad=self.requires_grad,
123
+ quant_state=copy_quant_state(self.quant_state, device),
124
+ blocksize=self.blocksize,
125
+ compress_statistics=self.compress_statistics,
126
+ quant_type=self.quant_type,
127
+ quant_storage=self.quant_storage,
128
+ bnb_quantized=self.bnb_quantized,
129
+ module=self.module
130
+ )
131
+ self.module.quant_state = n.quant_state
132
+ self.data = n.data
133
+ self.quant_state = n.quant_state
134
+ return n
135
+
136
+
137
+ class ForgeLoader4Bit(torch.nn.Module):
138
+ def __init__(self, *, device, dtype, quant_type, **kwargs):
139
+ super().__init__()
140
+ self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
141
+ self.weight = None
142
+ self.quant_state = None
143
+ self.bias = None
144
+ self.quant_type = quant_type
145
+
146
+ def _save_to_state_dict(self, destination, prefix, keep_vars):
147
+ super()._save_to_state_dict(destination, prefix, keep_vars)
148
+ quant_state = getattr(self.weight, "quant_state", None)
149
+ if quant_state is not None:
150
+ for k, v in quant_state.as_dict(packed=True).items():
151
+ destination[prefix + "weight." + k] = v if keep_vars else v.detach()
152
+ return
153
+
154
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
155
+ quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
156
+
157
+ if any('bitsandbytes' in k for k in quant_state_keys):
158
+ quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
159
+
160
+ self.weight = ForgeParams4bit.from_prequantized(
161
+ data=state_dict[prefix + 'weight'],
162
+ quantized_stats=quant_state_dict,
163
+ requires_grad=False,
164
+ device=self.dummy.device,
165
+ module=self
166
+ )
167
+ self.quant_state = self.weight.quant_state
168
+
169
+ if prefix + 'bias' in state_dict:
170
+ self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
171
+
172
+ del self.dummy
173
+ elif hasattr(self, 'dummy'):
174
+ if prefix + 'weight' in state_dict:
175
+ self.weight = ForgeParams4bit(
176
+ state_dict[prefix + 'weight'].to(self.dummy),
177
+ requires_grad=False,
178
+ compress_statistics=True,
179
+ quant_type=self.quant_type,
180
+ quant_storage=torch.uint8,
181
+ module=self,
182
+ )
183
+ self.quant_state = self.weight.quant_state
184
+
185
+ if prefix + 'bias' in state_dict:
186
+ self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
187
+
188
+ del self.dummy
189
+ else:
190
+ super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
191
+
192
+
193
+ class Linear(ForgeLoader4Bit):
194
+ def __init__(self, *args, device=None, dtype=None, **kwargs):
195
+ super().__init__(device=device, dtype=dtype, quant_type='nf4')
196
+
197
+ def forward(self, x):
198
+ self.weight.quant_state = self.quant_state
199
+
200
+ if self.bias is not None and self.bias.dtype != x.dtype:
201
+ # Maybe this can also be set to all non-bnb ops since the cost is very low.
202
+ # And it only invokes one time, and most linear does not have bias
203
+ self.bias.data = self.bias.data.to(x.dtype)
204
+
205
+ return functional_linear_4bits(x, self.weight, self.bias)
206
+
207
+
208
+ nn.Linear = Linear
209
+
210
+
211
+ # ---------------- Model ----------------
212
+
213
+
214
+ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
215
+ q, k = apply_rope(q, k, pe)
216
+
217
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
218
+ x = rearrange(x, "B H L D -> B L (H D)")
219
+
220
+ return x
221
+
222
+
223
+ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
224
+ assert dim % 2 == 0
225
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
226
+ omega = 1.0 / (theta**scale)
227
+ out = torch.einsum("...n,d->...nd", pos, omega)
228
+ out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
229
+ out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
230
+ return out.float()
231
+
232
+
233
+ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
234
+ xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
235
+ xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
236
+ xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
237
+ xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
238
+ return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
239
+
240
+
241
+ class EmbedND(nn.Module):
242
+ def __init__(self, dim: int, theta: int, axes_dim: list[int]):
243
+ super().__init__()
244
+ self.dim = dim
245
+ self.theta = theta
246
+ self.axes_dim = axes_dim
247
+
248
+ def forward(self, ids: Tensor) -> Tensor:
249
+ n_axes = ids.shape[-1]
250
+ emb = torch.cat(
251
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
252
+ dim=-3,
253
+ )
254
+
255
+ return emb.unsqueeze(1)
256
+
257
+
258
+ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
259
+ """
260
+ Create sinusoidal timestep embeddings.
261
+ :param t: a 1-D Tensor of N indices, one per batch element.
262
+ These may be fractional.
263
+ :param dim: the dimension of the output.
264
+ :param max_period: controls the minimum frequency of the embeddings.
265
+ :return: an (N, D) Tensor of positional embeddings.
266
+ """
267
+ t = time_factor * t
268
+ half = dim // 2
269
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
270
+ t.device
271
+ )
272
+
273
+ args = t[:, None].float() * freqs[None]
274
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
275
+ if dim % 2:
276
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
277
+ if torch.is_floating_point(t):
278
+ embedding = embedding.to(t)
279
+ return embedding
280
+
281
+
282
+ class MLPEmbedder(nn.Module):
283
+ def __init__(self, in_dim: int, hidden_dim: int):
284
+ super().__init__()
285
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
286
+ self.silu = nn.SiLU()
287
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
288
+
289
+ def forward(self, x: Tensor) -> Tensor:
290
+ return self.out_layer(self.silu(self.in_layer(x)))
291
+
292
+
293
+ class RMSNorm(torch.nn.Module):
294
+ def __init__(self, dim: int):
295
+ super().__init__()
296
+ self.scale = nn.Parameter(torch.ones(dim))
297
+
298
+ def forward(self, x: Tensor):
299
+ x_dtype = x.dtype
300
+ x = x.float()
301
+ rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
302
+ return (x * rrms).to(dtype=x_dtype) * self.scale
303
+
304
+
305
+ class QKNorm(torch.nn.Module):
306
+ def __init__(self, dim: int):
307
+ super().__init__()
308
+ self.query_norm = RMSNorm(dim)
309
+ self.key_norm = RMSNorm(dim)
310
+
311
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
312
+ q = self.query_norm(q)
313
+ k = self.key_norm(k)
314
+ return q.to(v), k.to(v)
315
+
316
+
317
+ class SelfAttention(nn.Module):
318
+ def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
319
+ super().__init__()
320
+ self.num_heads = num_heads
321
+ head_dim = dim // num_heads
322
+
323
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
324
+ self.norm = QKNorm(head_dim)
325
+ self.proj = nn.Linear(dim, dim)
326
+
327
+ def forward(self, x: Tensor, pe: Tensor) -> Tensor:
328
+ qkv = self.qkv(x)
329
+ q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
330
+ q, k = self.norm(q, k, v)
331
+ x = attention(q, k, v, pe=pe)
332
+ x = self.proj(x)
333
+ return x
334
+
335
+
336
+ @dataclass
337
+ class ModulationOut:
338
+ shift: Tensor
339
+ scale: Tensor
340
+ gate: Tensor
341
+
342
+
343
+ class Modulation(nn.Module):
344
+ def __init__(self, dim: int, double: bool):
345
+ super().__init__()
346
+ self.is_double = double
347
+ self.multiplier = 6 if double else 3
348
+ self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
349
+
350
+ def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
351
+ out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
352
+
353
+ return (
354
+ ModulationOut(*out[:3]),
355
+ ModulationOut(*out[3:]) if self.is_double else None,
356
+ )
357
+
358
+
359
+ class DoubleStreamBlock(nn.Module):
360
+ def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
361
+ super().__init__()
362
+
363
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
364
+ self.num_heads = num_heads
365
+ self.hidden_size = hidden_size
366
+ self.img_mod = Modulation(hidden_size, double=True)
367
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
368
+ self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
369
+
370
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
371
+ self.img_mlp = nn.Sequential(
372
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
373
+ nn.GELU(approximate="tanh"),
374
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
375
+ )
376
+
377
+ self.txt_mod = Modulation(hidden_size, double=True)
378
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
379
+ self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
380
+
381
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
382
+ self.txt_mlp = nn.Sequential(
383
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
384
+ nn.GELU(approximate="tanh"),
385
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
386
+ )
387
+
388
+ def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
389
+ img_mod1, img_mod2 = self.img_mod(vec)
390
+ txt_mod1, txt_mod2 = self.txt_mod(vec)
391
+
392
+ # prepare image for attention
393
+ img_modulated = self.img_norm1(img)
394
+ img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
395
+ img_qkv = self.img_attn.qkv(img_modulated)
396
+ img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
397
+ img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
398
+
399
+ # prepare txt for attention
400
+ txt_modulated = self.txt_norm1(txt)
401
+ txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
402
+ txt_qkv = self.txt_attn.qkv(txt_modulated)
403
+ txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
404
+ txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
405
+
406
+ # run actual attention
407
+ q = torch.cat((txt_q, img_q), dim=2)
408
+ k = torch.cat((txt_k, img_k), dim=2)
409
+ v = torch.cat((txt_v, img_v), dim=2)
410
+
411
+ attn = attention(q, k, v, pe=pe)
412
+ txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
413
+
414
+ # calculate the img bloks
415
+ img = img + img_mod1.gate * self.img_attn.proj(img_attn)
416
+ img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
417
+
418
+ # calculate the txt bloks
419
+ txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
420
+ txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
421
+ return img, txt
422
+
423
+
424
+ class SingleStreamBlock(nn.Module):
425
+ """
426
+ A DiT block with parallel linear layers as described in
427
+ https://arxiv.org/abs/2302.05442 and adapted modulation interface.
428
+ """
429
+
430
+ def __init__(
431
+ self,
432
+ hidden_size: int,
433
+ num_heads: int,
434
+ mlp_ratio: float = 4.0,
435
+ qk_scale: float | None = None,
436
+ ):
437
+ super().__init__()
438
+ self.hidden_dim = hidden_size
439
+ self.num_heads = num_heads
440
+ head_dim = hidden_size // num_heads
441
+ self.scale = qk_scale or head_dim**-0.5
442
+
443
+ self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
444
+ # qkv and mlp_in
445
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
446
+ # proj and mlp_out
447
+ self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
448
+
449
+ self.norm = QKNorm(head_dim)
450
+
451
+ self.hidden_size = hidden_size
452
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
453
+
454
+ self.mlp_act = nn.GELU(approximate="tanh")
455
+ self.modulation = Modulation(hidden_size, double=False)
456
+
457
+ def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
458
+ mod, _ = self.modulation(vec)
459
+ x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
460
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
461
+
462
+ q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
463
+ q, k = self.norm(q, k, v)
464
+
465
+ # compute attention
466
+ attn = attention(q, k, v, pe=pe)
467
+ # compute activation in mlp stream, cat again and run second linear layer
468
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
469
+ return x + mod.gate * output
470
+
471
+
472
+ class LastLayer(nn.Module):
473
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
474
+ super().__init__()
475
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
476
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
477
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
478
+
479
+ def forward(self, x: Tensor, vec: Tensor) -> Tensor:
480
+ shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
481
+ x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
482
+ x = self.linear(x)
483
+ return x
484
+
485
+
486
+ class FluxParams:
487
+ in_channels: int = 64
488
+ vec_in_dim: int = 768
489
+ context_in_dim: int = 4096
490
+ hidden_size: int = 3072
491
+ mlp_ratio: float = 4.0
492
+ num_heads: int = 24
493
+ depth: int = 19
494
+ depth_single_blocks: int = 38
495
+ axes_dim: list = [16, 56, 56]
496
+ theta: int = 10_000
497
+ qkv_bias: bool = True
498
+ guidance_embed: bool = True
499
+
500
+
501
+ class Flux(nn.Module):
502
+ """
503
+ Transformer model for flow matching on sequences.
504
+ """
505
+
506
+ def __init__(self, params = FluxParams()):
507
+ super().__init__()
508
+
509
+ self.params = params
510
+ self.in_channels = params.in_channels
511
+ self.out_channels = self.in_channels
512
+ if params.hidden_size % params.num_heads != 0:
513
+ raise ValueError(
514
+ f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
515
+ )
516
+ pe_dim = params.hidden_size // params.num_heads
517
+ if sum(params.axes_dim) != pe_dim:
518
+ raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
519
+ self.hidden_size = params.hidden_size
520
+ self.num_heads = params.num_heads
521
+ self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
522
+ self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
523
+ self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
524
+ self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
525
+ self.guidance_in = (
526
+ MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
527
+ )
528
+ self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
529
+
530
+ self.double_blocks = nn.ModuleList(
531
+ [
532
+ DoubleStreamBlock(
533
+ self.hidden_size,
534
+ self.num_heads,
535
+ mlp_ratio=params.mlp_ratio,
536
+ qkv_bias=params.qkv_bias,
537
+ )
538
+ for _ in range(params.depth)
539
+ ]
540
+ )
541
+
542
+ self.single_blocks = nn.ModuleList(
543
+ [
544
+ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
545
+ for _ in range(params.depth_single_blocks)
546
+ ]
547
+ )
548
+
549
+ self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
550
+
551
+ def forward(
552
+ self,
553
+ img: Tensor,
554
+ img_ids: Tensor,
555
+ txt: Tensor,
556
+ txt_ids: Tensor,
557
+ timesteps: Tensor,
558
+ y: Tensor,
559
+ guidance: Tensor | None = None,
560
+ ) -> Tensor:
561
+ if img.ndim != 3 or txt.ndim != 3:
562
+ raise ValueError("Input img and txt tensors must have 3 dimensions.")
563
+
564
+ # running on sequences img
565
+ img = self.img_in(img)
566
+ vec = self.time_in(timestep_embedding(timesteps, 256))
567
+ if self.params.guidance_embed:
568
+ if guidance is None:
569
+ raise ValueError("Didn't get guidance strength for guidance distilled model.")
570
+ vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
571
+ vec = vec + self.vector_in(y)
572
+ txt = self.txt_in(txt)
573
+
574
+ ids = torch.cat((txt_ids, img_ids), dim=1)
575
+ pe = self.pe_embedder(ids)
576
+
577
+ for block in self.double_blocks:
578
+ img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
579
+
580
+ img = torch.cat((txt, img), 1)
581
+ for block in self.single_blocks:
582
+ img = block(img, vec=vec, pe=pe)
583
+ img = img[:, txt.shape[1] :, ...]
584
+
585
+ img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
586
+ return img
587
+
588
+
589
+ def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
590
+ bs, c, h, w = img.shape
591
+ if bs == 1 and not isinstance(prompt, str):
592
+ bs = len(prompt)
593
+
594
+ img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
595
+ if img.shape[0] == 1 and bs > 1:
596
+ img = repeat(img, "1 ... -> bs ...", bs=bs)
597
+
598
+ img_ids = torch.zeros(h // 2, w // 2, 3)
599
+ img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
600
+ img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
601
+ img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
602
+
603
+ if isinstance(prompt, str):
604
+ prompt = [prompt]
605
+ txt = t5(prompt)
606
+ if txt.shape[0] == 1 and bs > 1:
607
+ txt = repeat(txt, "1 ... -> bs ...", bs=bs)
608
+ txt_ids = torch.zeros(bs, txt.shape[1], 3)
609
+
610
+ vec = clip(prompt)
611
+ if vec.shape[0] == 1 and bs > 1:
612
+ vec = repeat(vec, "1 ... -> bs ...", bs=bs)
613
+
614
+ return {
615
+ "img": img,
616
+ "img_ids": img_ids.to(img.device),
617
+ "txt": txt.to(img.device),
618
+ "txt_ids": txt_ids.to(img.device),
619
+ "vec": vec.to(img.device),
620
+ }
621
+
622
+
623
+ def time_shift(mu: float, sigma: float, t: Tensor):
624
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
625
+
626
+
627
+ def get_lin_function(
628
+ x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
629
+ ) -> Callable[[float], float]:
630
+ m = (y2 - y1) / (x2 - x1)
631
+ b = y1 - m * x1
632
+ return lambda x: m * x + b
633
+
634
+
635
+ def get_schedule(
636
+ num_steps: int,
637
+ image_seq_len: int,
638
+ base_shift: float = 0.5,
639
+ max_shift: float = 1.15,
640
+ shift: bool = True,
641
+ ) -> list[float]:
642
+ # extra step for zero
643
+ timesteps = torch.linspace(1, 0, num_steps + 1)
644
+
645
+ # shifting the schedule to favor high timesteps for higher signal images
646
+ if shift:
647
+ # eastimate mu based on linear estimation between two points
648
+ mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
649
+ timesteps = time_shift(mu, 1.0, timesteps)
650
+
651
+ return timesteps.tolist()
652
+
653
+
654
+ def denoise(
655
+ model: Flux,
656
+ # model input
657
+ img: Tensor,
658
+ img_ids: Tensor,
659
+ txt: Tensor,
660
+ txt_ids: Tensor,
661
+ vec: Tensor,
662
+ # sampling parameters
663
+ timesteps: list[float],
664
+ guidance: float = 4.0,
665
+ ):
666
+ # this is ignored for schnell
667
+ guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
668
+ for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
669
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
670
+ pred = model(
671
+ img=img,
672
+ img_ids=img_ids,
673
+ txt=txt,
674
+ txt_ids=txt_ids,
675
+ y=vec,
676
+ timesteps=t_vec,
677
+ guidance=guidance_vec,
678
+ )
679
+
680
+ img = img + (t_prev - t_curr) * pred
681
+
682
+ return img
683
+
684
+
685
+ def unpack(x: Tensor, height: int, width: int) -> Tensor:
686
+ return rearrange(
687
+ x,
688
+ "b (h w) (c ph pw) -> b c (h ph) (w pw)",
689
+ h=math.ceil(height / 16),
690
+ w=math.ceil(width / 16),
691
+ ph=2,
692
+ pw=2,
693
+ )
694
+
695
+ @dataclass
696
+ class SamplingOptions:
697
+ prompt: str
698
+ width: int
699
+ height: int
700
+ guidance: float
701
+ seed: int | None
702
+
703
+
704
+ def get_image(image) -> torch.Tensor | None:
705
+ if image is None:
706
+ return None
707
+ image = Image.fromarray(image).convert("RGB")
708
+
709
+ transform = transforms.Compose([
710
+ transforms.ToTensor(),
711
+ transforms.Lambda(lambda x: 2.0 * x - 1.0),
712
+ ])
713
+ img: torch.Tensor = transform(image)
714
+ return img[None, ...]
715
+
716
+
717
+ # ---------------- Demo ----------------
718
+
719
+
720
+ from pathlib import Path
721
+
722
+ if not Path("flux1-dev-bnb-nf4.safetensors").exists():
723
+ torch.hub.download_url_to_file("https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/resolve/main/flux1-dev-bnb-nf4.safetensors", "flux1-dev-bnb-nf4.safetensors")
724
+
725
+ sd = load_file("flux1-dev-bnb-nf4.safetensors")
726
+ sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
727
+ model = Flux().to(dtype=torch.float16, device="cuda")
728
+ result = model.load_state_dict(sd)
729
+ print(result)
730
+
731
+ # model = Flux().to(dtype=torch.bfloat16, device="cuda")
732
+ # result = model.load_state_dict(load_file("/storage/dev/nyanko/flux-dev/flux1-dev.sft"))
733
+
734
+ @torch.inference_mode()
735
+ def generate_image(
736
+ prompt, width, height, guidance, seed,
737
+ do_img2img, init_image, image2image_strength, resize_img,
738
+ progress=gr.Progress(track_tqdm=True),
739
+ ):
740
+ if seed == 0:
741
+ seed = int(random.random() * 1000000)
742
+
743
+ device = "cuda" if torch.cuda.is_available() else "cpu"
744
+ torch_device = torch.device(device)
745
+
746
+ if do_img2img and init_image is not None:
747
+ init_image = get_image(init_image)
748
+ if resize_img:
749
+ init_image = torch.nn.functional.interpolate(init_image, (height, width))
750
+ else:
751
+ h, w = init_image.shape[-2:]
752
+ init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
753
+ height = init_image.shape[-2]
754
+ width = init_image.shape[-1]
755
+ init_image = ae.encode(init_image.to(torch_device))
756
+
757
+ generator = torch.Generator(device=device).manual_seed(seed)
758
+ x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
759
+
760
+ num_steps = 25
761
+ timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
762
+
763
+ if do_img2img and init_image is not None:
764
+ t_idx = int((1 - image2image_strength) * num_steps)
765
+ t = timesteps[t_idx]
766
+ timesteps = timesteps[t_idx:]
767
+ x = t * x + (1.0 - t) * init_image.to(x.dtype)
768
+
769
+ inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
770
+ x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
771
+ x = unpack(x.float(), height, width)
772
+ with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
773
+ x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
774
+ x = ae.decode(x).sample
775
+
776
+ x = x.clamp(-1, 1)
777
+ x = rearrange(x[0], "c h w -> h w c")
778
+ img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
779
+
780
+ return img, seed
781
+
782
+ def create_demo():
783
+ with gr.Blocks(theme="bethecloud/storj_theme") as demo:
784
+ gr.HTML(
785
+ """
786
+ <div style="text-align: center; margin: 0 auto;">
787
+ <div
788
+ style="
789
+ display: inline-flex;
790
+ align-items: center;
791
+ gap: 0.8rem;
792
+ font-size: 1.75rem;
793
+ "
794
+ >
795
+ <svg
796
+ width="0.65em"
797
+ height="0.65em"
798
+ viewBox="0 0 115 115"
799
+ fill="none"
800
+ xmlns="http://www.w3.org/2000/svg"
801
+ >
802
+ <rect width="23" height="23" fill="white"></rect>
803
+ <rect y="69" width="23" height="23" fill="white"></rect>
804
+ <rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
805
+ <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
806
+ <rect x="46" width="23" height="23" fill="white"></rect>
807
+ <rect x="46" y="69" width="23" height="23" fill="white"></rect>
808
+ <rect x="69" width="23" height="23" fill="black"></rect>
809
+ <rect x="69" y="69" width="23" height="23" fill="black"></rect>
810
+ <rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
811
+ <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
812
+ <rect x="115" y="46" width="23" height="23" fill="white"></rect>
813
+ <rect x="115" y="115" width="23" height="23" fill="white"></rect>
814
+ <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
815
+ <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
816
+ <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
817
+ <rect x="92" y="69" width="23" height="23" fill="white"></rect>
818
+ <rect x="69" y="46" width="23" height="23" fill="white"></rect>
819
+ <rect x="69" y="115" width="23" height="23" fill="white"></rect>
820
+ <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
821
+ <rect x="46" y="46" width="23" height="23" fill="black"></rect>
822
+ <rect x="46" y="115" width="23" height="23" fill="black"></rect>
823
+ <rect x="46" y="69" width="23" height="23" fill="black"></rect>
824
+ <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
825
+ <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
826
+ <rect x="23" y="69" width="23" height="23" fill="black"></rect>
827
+ </svg>
828
+ <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
829
+ FLUX.1 dev NF4 Quantized Demo
830
+ </h1>
831
+ </div>
832
+ <p style="margin-bottom: 20px; font-size: 94%; line-height: 23px;">
833
+ 12B param rectified flow transformer guidance-distilled from <a href="https://blackforestlabs.ai/">FLUX.1 [pro]</a>
834
+ <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md">[non-commercial license]</a> <a href="https://blackforestlabs.ai/announcing-black-forest-labs/">[blog]</a> <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev">[model]</a>
835
+ </p>
836
+ </div>
837
+ """
838
+ )
839
+ with gr.Row():
840
+ with gr.Column():
841
+ prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture")
842
+
843
+ width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360)
844
+ height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
845
+ guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
846
+ seed = gr.Number(label="Seed", precision=-1)
847
+ do_img2img = gr.Checkbox(label="Image to Image", value=False)
848
+ init_image = gr.Image(label="Input Image", visible=False)
849
+ image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
850
+ resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
851
+ generate_button = gr.Button("Generate")
852
+
853
+ with gr.Column():
854
+ output_image = gr.Image(label="Generated Image")
855
+ output_seed = gr.Number(label="Used Seed", precision=0)
856
+
857
+ do_img2img.change(
858
+ fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
859
+ inputs=[do_img2img],
860
+ outputs=[init_image, image2image_strength, resize_img]
861
+ )
862
+
863
+ generate_button.click(
864
+ fn=generate_image,
865
+ inputs=[prompt, width, height, guidance, seed, do_img2img, init_image, image2image_strength, resize_img],
866
+ outputs=[output_image, output_seed]
867
+ )
868
+
869
+ examples = [
870
+ "a tiny astronaut hatching from an egg on the moon",
871
+ "a cat holding a sign that says hello world",
872
+ "an anime illustration of a wiener schnitzel",
873
+ ]
874
+
875
+ return demo
876
+
877
+ if __name__ == "__main__":
878
+ demo = create_demo()
879
+ demo.launch()