File size: 9,917 Bytes
f9b9d56 83ee74c 574f73e 705c5b5 83ee74c f9b9d56 1fd4ab2 ad9db85 1fd4ab2 79e0b8a ad9db85 f9b9d56 2af89cf 1fd4ab2 99d94e0 da20c1b 99d94e0 1fd4ab2 da20c1b 1fd4ab2 2af89cf da20c1b 2af89cf da20c1b 1fd4ab2 da20c1b 1fd4ab2 2af89cf 705c5b5 0997082 2af89cf 705c5b5 99d94e0 705c5b5 2af89cf 99d94e0 521288b 1fd4ab2 521288b 1fd4ab2 521288b 1fd4ab2 521288b 1fd4ab2 705c5b5 521288b 1fd4ab2 705c5b5 1fd4ab2 0997082 d57197f ad9db85 1fd4ab2 da20c1b 1fd4ab2 705c5b5 7ffca43 2af89cf da20c1b 2af89cf 7ffca43 99d94e0 1fd4ab2 7ffca43 1fd4ab2 7ffca43 1fd4ab2 2af89cf 1fd4ab2 705c5b5 d57197f 0997082 705c5b5 0997082 ad9db85 da20c1b ad9db85 f2c0975 83ee74c 0997082 83ee74c 7ffca43 705c5b5 da20c1b 0997082 1fd4ab2 da20c1b 705c5b5 7b3fa19 7ffca43 7b3fa19 1fd4ab2 63c5e29 1fd4ab2 7ffca43 1fd4ab2 7ffca43 1fd4ab2 7ffca43 1fd4ab2 63c5e29 2af89cf ad9db85 1fd4ab2 ad9db85 7ffca43 1fd4ab2 99d94e0 d57197f 7ffca43 63c5e29 1fd4ab2 63c5e29 1fd4ab2 7ffca43 ad9db85 da20c1b 7ffca43 1fd4ab2 7ffca43 1fd4ab2 da20c1b 7ffca43 63c5e29 1fd4ab2 63c5e29 1fd4ab2 63c5e29 f9b9d56 1fd4ab2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Tuple
# LLM Models Definition
LLM_MODELS = {
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct",
"Mistral Nemo 2407": "mistralai/Mistral-Nemo-Instruct-2407",
"Alibaba Qwen QwQ-32B": "Qwen/QwQ-32B-Preview"
}
def get_client(model_name):
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN"))
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv']:
try:
lines = content.split('\n')
header = lines[0]
columns = header.count('|') - 1
rows = len(lines) - 3
return f"π Dataset Structure: {columns} columns, {rows} data samples"
except:
return "β Dataset structure analysis failed"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"π» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"π Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words"
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
content = df.head(10).to_markdown(index=False)
return content, "parquet"
elif file_ext == '.csv':
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
df = pd.read_csv(file.name, encoding=encoding)
content = f"π Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n"
content += f"\nπ Data Information:\n"
content += f"- Total Rows: {len(df)}\n"
content += f"- Total Columns: {len(df.columns)}\n"
content += f"- Column List: {', '.join(df.columns)}\n"
content += f"\nπ Column Data Types:\n"
for col, dtype in df.dtypes.items():
content += f"- {col}: {dtype}\n"
null_counts = df.isnull().sum()
if null_counts.any():
content += f"\nβ οΈ Missing Values:\n"
for col, null_count in null_counts[null_counts > 0].items():
content += f"- {col}: {null_count} missing\n"
return content, "csv"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})")
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, "text"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})")
except Exception as e:
return f"β Error reading file: {str(e)}", "error"
def format_history(history):
formatted_history = []
for user_msg, assistant_msg in history:
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_history.append({"role": "assistant", "content": assistant_msg})
return formatted_history
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
system_prefix = """You are a file analysis expert. Analyze the uploaded file in depth from the following perspectives:
1. π Overall structure and composition
2. π Key content and pattern analysis
3. π Data characteristics and meaning
- For datasets: Column meanings, data types, value distributions
- For text/code: Structural features, main patterns
4. π‘ Potential applications
5. β¨ Data quality and areas for improvement
Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way. Format the analysis results in Markdown and include specific examples where possible."""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if file_type == "error":
yield "", history + [[message, content]]
return
file_summary = analyze_file_content(content, file_type)
if file_type in ['parquet', 'csv']:
system_message += f"\n\nFile Content:\n```markdown\n{content}\n```"
else:
system_message += f"\n\nFile Content:\n```\n{content}\n```"
if message == "Starting file analysis...":
message = f"""[Structure Analysis] {file_summary}
Please provide detailed analysis from these perspectives:
1. π Overall file structure and format
2. π Key content and component analysis
3. π Data/content characteristics and patterns
4. β Quality and completeness evaluation
5. π‘ Suggested improvements
6. π― Practical applications and recommendations"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
messages.extend(format_history(history))
messages.append({"role": "user", "content": message})
try:
client = get_client(model_name)
partial_message = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
partial_message += token
yield "", history + [[message, partial_message]]
except Exception as e:
error_msg = f"β Inference error: {str(e)}"
yield "", history + [[message, error_msg]]
css = """
footer {visibility: hidden}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="EveryChat π€") as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">EveryChat π€</h1>
<h3 style="font-size: 1.2em; margin: 1em;">Your Intelligent File Analysis Assistant π</h3>
</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=600, label="Chat Interface π¬")
msg = gr.Textbox(
label="Type your message",
show_label=False,
placeholder="Ask me anything about the uploaded file... π",
container=False
)
clear = gr.ClearButton([msg, chatbot], label="Clear Chat ποΈ")
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(LLM_MODELS.keys()),
value="Cohere c4ai-crp-08-2024",
label="Select LLM Model π€",
info="Choose your preferred AI model"
)
file_upload = gr.File(
label="Upload File π",
info="Support: Text, Code, CSV, Parquet files",
file_types=["text", ".csv", ".parquet"],
type="filepath"
)
with gr.Accordion("Advanced Settings βοΈ", open=False):
system_message = gr.Textbox(label="System Message π", value="")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens π")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature π‘οΈ")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P π")
# Event bindings
msg.submit(
chat,
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
# Auto-analysis on file upload
file_upload.change(
chat,
inputs=[gr.Textbox(value="Starting file analysis..."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
)
# Example queries
gr.Examples(
examples=[
["Please explain the overall structure and features of the file in detail π"],
["Analyze the main patterns and characteristics of this file π"],
["Evaluate the file's quality and potential improvements π‘"],
["How can we practically utilize this file? π―"],
["Summarize the main content and derive key insights β¨"],
["Please continue with more detailed analysis π"],
],
inputs=msg,
)
if __name__ == "__main__":
demo.launch() |