File size: 9,917 Bytes
f9b9d56
83ee74c
574f73e
705c5b5
83ee74c
f9b9d56
1fd4ab2
ad9db85
1fd4ab2
79e0b8a
 
 
ad9db85
 
 
 
f9b9d56
2af89cf
1fd4ab2
99d94e0
da20c1b
99d94e0
 
 
1fd4ab2
 
da20c1b
1fd4ab2
2af89cf
 
 
 
 
da20c1b
2af89cf
 
da20c1b
1fd4ab2
da20c1b
 
 
1fd4ab2
2af89cf
705c5b5
0997082
2af89cf
705c5b5
99d94e0
 
 
705c5b5
2af89cf
 
99d94e0
521288b
 
 
 
1fd4ab2
 
 
 
 
 
521288b
 
 
 
1fd4ab2
521288b
1fd4ab2
521288b
 
 
1fd4ab2
705c5b5
521288b
 
 
 
 
 
 
 
1fd4ab2
705c5b5
1fd4ab2
0997082
d57197f
 
 
 
 
 
 
 
ad9db85
1fd4ab2
 
 
 
 
 
 
 
da20c1b
1fd4ab2
705c5b5
7ffca43
2af89cf
 
da20c1b
 
2af89cf
 
7ffca43
99d94e0
1fd4ab2
7ffca43
1fd4ab2
7ffca43
1fd4ab2
 
2af89cf
1fd4ab2
 
 
 
 
 
 
705c5b5
 
d57197f
0997082
705c5b5
0997082
ad9db85
da20c1b
 
ad9db85
f2c0975
 
83ee74c
0997082
 
83ee74c
7ffca43
705c5b5
da20c1b
 
 
0997082
1fd4ab2
da20c1b
705c5b5
7b3fa19
7ffca43
7b3fa19
 
1fd4ab2
 
 
 
 
 
 
 
 
 
63c5e29
 
1fd4ab2
7ffca43
1fd4ab2
7ffca43
1fd4ab2
7ffca43
 
1fd4ab2
63c5e29
 
2af89cf
ad9db85
1fd4ab2
 
 
ad9db85
 
7ffca43
1fd4ab2
 
99d94e0
d57197f
7ffca43
63c5e29
1fd4ab2
 
 
 
 
63c5e29
1fd4ab2
7ffca43
 
ad9db85
da20c1b
 
 
 
 
 
7ffca43
 
1fd4ab2
7ffca43
 
1fd4ab2
da20c1b
 
7ffca43
63c5e29
1fd4ab2
63c5e29
 
1fd4ab2
 
 
 
 
 
63c5e29
 
 
f9b9d56
 
1fd4ab2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Tuple

# LLM Models Definition
LLM_MODELS = {
    "Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024",  # Default
    "Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct",    
    "Mistral Nemo 2407": "mistralai/Mistral-Nemo-Instruct-2407",
    "Alibaba Qwen QwQ-32B": "Qwen/QwQ-32B-Preview"
}

def get_client(model_name):
    return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN"))

def analyze_file_content(content, file_type):
    """Analyze file content and return structural summary"""
    if file_type in ['parquet', 'csv']:
        try:
            lines = content.split('\n')
            header = lines[0]
            columns = header.count('|') - 1
            rows = len(lines) - 3
            return f"πŸ“Š Dataset Structure: {columns} columns, {rows} data samples"
        except:
            return "❌ Dataset structure analysis failed"
    
    lines = content.split('\n')
    total_lines = len(lines)
    non_empty_lines = len([line for line in lines if line.strip()])
    
    if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
        functions = len([line for line in lines if 'def ' in line])
        classes = len([line for line in lines if 'class ' in line])
        imports = len([line for line in lines if 'import ' in line or 'from ' in line])
        return f"πŸ’» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
    
    paragraphs = content.count('\n\n') + 1
    words = len(content.split())
    return f"πŸ“ Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words"

def read_uploaded_file(file):
    if file is None:
        return "", ""
    try:
        file_ext = os.path.splitext(file.name)[1].lower()
        
        if file_ext == '.parquet':
            df = pd.read_parquet(file.name, engine='pyarrow')
            content = df.head(10).to_markdown(index=False)
            return content, "parquet"
        elif file_ext == '.csv':
            encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    df = pd.read_csv(file.name, encoding=encoding)
                    content = f"πŸ“Š Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n"
                    content += f"\nπŸ“ˆ Data Information:\n"
                    content += f"- Total Rows: {len(df)}\n"
                    content += f"- Total Columns: {len(df.columns)}\n"
                    content += f"- Column List: {', '.join(df.columns)}\n"
                    content += f"\nπŸ“‹ Column Data Types:\n"
                    for col, dtype in df.dtypes.items():
                        content += f"- {col}: {dtype}\n"
                    null_counts = df.isnull().sum()
                    if null_counts.any():
                        content += f"\n⚠️ Missing Values:\n"
                        for col, null_count in null_counts[null_counts > 0].items():
                            content += f"- {col}: {null_count} missing\n"
                    return content, "csv"
                except UnicodeDecodeError:
                    continue
            raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})")
        else:
            encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
            for encoding in encodings:
                try:
                    with open(file.name, 'r', encoding=encoding) as f:
                        content = f.read()
                    return content, "text"
                except UnicodeDecodeError:
                    continue
            raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})")
    except Exception as e:
        return f"❌ Error reading file: {str(e)}", "error"

def format_history(history):
    formatted_history = []
    for user_msg, assistant_msg in history:
        formatted_history.append({"role": "user", "content": user_msg})
        if assistant_msg:
            formatted_history.append({"role": "assistant", "content": assistant_msg})
    return formatted_history

def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
    system_prefix = """You are a file analysis expert. Analyze the uploaded file in depth from the following perspectives:
1. πŸ“‹ Overall structure and composition
2. πŸ“Š Key content and pattern analysis
3. πŸ“ˆ Data characteristics and meaning
   - For datasets: Column meanings, data types, value distributions
   - For text/code: Structural features, main patterns
4. πŸ’‘ Potential applications
5. ✨ Data quality and areas for improvement

Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way. Format the analysis results in Markdown and include specific examples where possible."""

    if uploaded_file:
        content, file_type = read_uploaded_file(uploaded_file)
        if file_type == "error":
            yield "", history + [[message, content]]
            return
        
        file_summary = analyze_file_content(content, file_type)
        
        if file_type in ['parquet', 'csv']:
            system_message += f"\n\nFile Content:\n```markdown\n{content}\n```"
        else:
            system_message += f"\n\nFile Content:\n```\n{content}\n```"
            
        if message == "Starting file analysis...":
            message = f"""[Structure Analysis] {file_summary}

Please provide detailed analysis from these perspectives:
1. πŸ“‹ Overall file structure and format
2. πŸ“Š Key content and component analysis
3. πŸ“ˆ Data/content characteristics and patterns
4. ⭐ Quality and completeness evaluation
5. πŸ’‘ Suggested improvements
6. 🎯 Practical applications and recommendations"""

    messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
    messages.extend(format_history(history))
    messages.append({"role": "user", "content": message})

    try:
        client = get_client(model_name)
        partial_message = ""
        
        for msg in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = msg.choices[0].delta.get('content', None)
            if token:
                partial_message += token
                yield "", history + [[message, partial_message]]
                
    except Exception as e:
        error_msg = f"❌ Inference error: {str(e)}"
        yield "", history + [[message, error_msg]]

css = """
footer {visibility: hidden}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="EveryChat πŸ€–") as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 800px; margin: 0 auto;">
            <h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">EveryChat πŸ€–</h1>
            <h3 style="font-size: 1.2em; margin: 1em;">Your Intelligent File Analysis Assistant πŸ“Š</h3>
        </div>
        """
    )
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(height=600, label="Chat Interface πŸ’¬")
            msg = gr.Textbox(
                label="Type your message",
                show_label=False,
                placeholder="Ask me anything about the uploaded file... πŸ’­",
                container=False
            )
            clear = gr.ClearButton([msg, chatbot], label="Clear Chat πŸ—‘οΈ")
        
        with gr.Column(scale=1):
            model_name = gr.Radio(
                choices=list(LLM_MODELS.keys()),
                value="Cohere c4ai-crp-08-2024",
                label="Select LLM Model πŸ€–",
                info="Choose your preferred AI model"
            )
            
            file_upload = gr.File(
                label="Upload File πŸ“",
                info="Support: Text, Code, CSV, Parquet files",
                file_types=["text", ".csv", ".parquet"],
                type="filepath"
            )
            
            with gr.Accordion("Advanced Settings βš™οΈ", open=False):
                system_message = gr.Textbox(label="System Message πŸ“", value="")
                max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens πŸ“Š")
                temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature 🌑️")
                top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P πŸ“ˆ")

    # Event bindings
    msg.submit(
        chat,
        inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
        outputs=[msg, chatbot],
        queue=True
    ).then(
        lambda: gr.update(interactive=True),
        None,
        [msg]
    )

    # Auto-analysis on file upload
    file_upload.change(
        chat,
        inputs=[gr.Textbox(value="Starting file analysis..."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
        outputs=[msg, chatbot],
        queue=True
    )

    # Example queries
    gr.Examples(
        examples=[
            ["Please explain the overall structure and features of the file in detail πŸ“‹"],
            ["Analyze the main patterns and characteristics of this file πŸ“Š"],
            ["Evaluate the file's quality and potential improvements πŸ’‘"],
            ["How can we practically utilize this file? 🎯"],
            ["Summarize the main content and derive key insights ✨"],
            ["Please continue with more detailed analysis πŸ“ˆ"],
        ],
        inputs=msg,
    )

if __name__ == "__main__":
    demo.launch()