|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import pandas as pd |
|
from typing import List, Tuple |
|
|
|
|
|
LLM_MODELS = { |
|
"Default": "CohereForAI/c4ai-command-r-plus-08-2024", |
|
"Meta": "meta-llama/Llama-3.3-70B-Instruct", |
|
"Mistral": "mistralai/Mistral-Nemo-Instruct-2407", |
|
"Alibaba": "Qwen/QwQ-32B-Preview" |
|
} |
|
|
|
def get_client(model_name): |
|
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN")) |
|
|
|
def analyze_file_content(content, file_type): |
|
"""νμΌ λ΄μ©μ λΆμνμ¬ 1μ€ μμ½μ λ°ν""" |
|
if file_type == 'parquet': |
|
return f"λ°μ΄ν°μ
λΆμ: {content.count('|')-1}κ° μ»¬λΌμ λ°μ΄ν° ν
μ΄λΈ" |
|
|
|
|
|
lines = content.split('\n') |
|
total_lines = len(lines) |
|
non_empty_lines = len([line for line in lines if line.strip()]) |
|
|
|
if 'def ' in content or 'class ' in content: |
|
functions = len([line for line in lines if 'def ' in line]) |
|
classes = len([line for line in lines if 'class ' in line]) |
|
return f"μ½λ λΆμ: {total_lines}μ€μ Python μ½λ ({functions}κ° ν¨μ, {classes}κ° ν΄λμ€ ν¬ν¨)" |
|
else: |
|
return f"ν
μ€νΈ λΆμ: {total_lines}μ€μ ν
μ€νΈ λ¬Έμ (μ ν¨ λ΄μ© {non_empty_lines}μ€)" |
|
|
|
def read_uploaded_file(file): |
|
if file is None: |
|
return "", "" |
|
try: |
|
if file.name.endswith('.parquet'): |
|
df = pd.read_parquet(file.name, engine='pyarrow') |
|
content = df.head(10).to_markdown(index=False) |
|
return content, "parquet" |
|
else: |
|
content = file.read() |
|
if isinstance(content, bytes): |
|
content = content.decode('utf-8') |
|
return content, "text" |
|
except Exception as e: |
|
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "error" |
|
|
|
def format_history(history): |
|
formatted_history = [] |
|
for user_msg, assistant_msg in history: |
|
formatted_history.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
formatted_history.append({"role": "assistant", "content": assistant_msg}) |
|
return formatted_history |
|
|
|
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9): |
|
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ£Όμ΄μ§ μμ€μ½λλ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ "μλΉμ€ μ¬μ© μ€λͺ
λ° μλ΄, Q&Aλ₯Ό νλ μν μ΄λ€". μμ£Ό μΉμ νκ³ μμΈνκ² 4000ν ν° μ΄μ Markdown νμμΌλ‘ μμ±νλΌ. λλ μ
λ ₯λ λ΄μ©μ κΈ°λ°μΌλ‘ μ¬μ© μ€λͺ
λ° μ§μ μλ΅μ μ§ννλ©°, μ΄μ©μμκ² λμμ μ£Όμ΄μΌ νλ€.""" |
|
|
|
if uploaded_file: |
|
content, file_type = read_uploaded_file(uploaded_file) |
|
if file_type == "error": |
|
return "", history + [[message, content]] |
|
|
|
|
|
file_summary = analyze_file_content(content, file_type) |
|
|
|
if file_type == 'parquet': |
|
system_message += f"\n\nνμΌ λ΄μ©:\n```markdown\n{content}\n```" |
|
else: |
|
system_message += f"\n\nνμΌ λ΄μ©:\n```python\n{content}\n```" |
|
|
|
if message == "νμΌ λΆμμ μμν©λλ€.": |
|
message = f"""[νμΌ μμ½] {file_summary} |
|
|
|
λ€μ λ΄μ©μ ν¬ν¨νμ¬ μμΈν μ€λͺ
νλΌ: |
|
1. νμΌμ μ£Όμ λͺ©μ κ³Ό κΈ°λ₯ |
|
2. μ£Όμ νΉμ§κ³Ό ꡬμ±μμ |
|
3. νμ© λ°©λ² λ° μ¬μ© μλλ¦¬μ€ |
|
4. μ£Όμμ¬ν λ° μ νμ¬ν |
|
5. κΈ°λν¨κ³Ό λ° μ₯μ """ |
|
|
|
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] |
|
messages.extend(format_history(history)) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
try: |
|
client = get_client(model_name) |
|
for msg in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = msg.choices[0].delta.get('content', None) |
|
if token: |
|
response += token |
|
|
|
history = history + [[message, response]] |
|
return "", history |
|
except Exception as e: |
|
error_msg = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}" |
|
history = history + [[message, error_msg]] |
|
return "", history |
|
|
|
css = """ |
|
footer {visibility: hidden} |
|
""" |
|
|
|
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(height=600) |
|
msg = gr.Textbox( |
|
label="λ©μμ§λ₯Ό μ
λ ₯νμΈμ", |
|
show_label=False, |
|
placeholder="λ©μμ§λ₯Ό μ
λ ₯νμΈμ...", |
|
container=False |
|
) |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
with gr.Column(scale=1): |
|
model_name = gr.Radio( |
|
choices=list(LLM_MODELS.keys()), |
|
value="Default", |
|
label="LLM λͺ¨λΈ μ ν", |
|
info="μ¬μ©ν LLM λͺ¨λΈμ μ ννμΈμ" |
|
) |
|
|
|
file_upload = gr.File( |
|
label="νμΌ μ
λ‘λ", |
|
file_types=["text", ".parquet"], |
|
type="filepath" |
|
) |
|
|
|
with gr.Accordion("κ³ κΈ μ€μ ", open=False): |
|
system_message = gr.Textbox(label="System Message", value="") |
|
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens") |
|
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature") |
|
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P") |
|
|
|
|
|
msg.submit( |
|
chat, |
|
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], |
|
outputs=[msg, chatbot] |
|
) |
|
|
|
|
|
file_upload.change( |
|
chat, |
|
inputs=[gr.Textbox(value="νμΌ λΆμμ μμν©λλ€."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], |
|
outputs=[msg, chatbot] |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["μμΈν μ¬μ© λ°©λ²μ λ§μΉ νλ©΄μ 보면μ μ€λͺ
νλ―μ΄ 4000 ν ν° μ΄μ μμΈν μ€λͺ
νλΌ"], |
|
["FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."], |
|
["μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"], |
|
["λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈλ‘ 4000 ν ν° μ΄μ μμ±νλΌ"], |
|
["νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² μμ±νλΌ"], |
|
["κ³μ μ΄μ΄μ λ΅λ³νλΌ"], |
|
], |
|
inputs=msg, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |