|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import pandas as pd |
|
from typing import List, Tuple |
|
|
|
|
|
LLM_MODELS = { |
|
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", |
|
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct" |
|
} |
|
|
|
def get_client(model_name="Cohere c4ai-crp-08-2024"): |
|
try: |
|
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN")) |
|
except Exception: |
|
|
|
return InferenceClient(LLM_MODELS["Meta Llama3.3-70B"], token=os.getenv("HF_TOKEN")) |
|
|
|
def analyze_file_content(content, file_type): |
|
"""Analyze file content and return structural summary""" |
|
if file_type in ['parquet', 'csv']: |
|
try: |
|
lines = content.split('\n') |
|
header = lines[0] |
|
columns = header.count('|') - 1 |
|
rows = len(lines) - 3 |
|
return f"π Dataset Structure: {columns} columns, {rows} data samples" |
|
except: |
|
return "β Dataset structure analysis failed" |
|
|
|
lines = content.split('\n') |
|
total_lines = len(lines) |
|
non_empty_lines = len([line for line in lines if line.strip()]) |
|
|
|
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']): |
|
functions = len([line for line in lines if 'def ' in line]) |
|
classes = len([line for line in lines if 'class ' in line]) |
|
imports = len([line for line in lines if 'import ' in line or 'from ' in line]) |
|
return f"π» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})" |
|
|
|
paragraphs = content.count('\n\n') + 1 |
|
words = len(content.split()) |
|
return f"π Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words" |
|
|
|
def read_uploaded_file(file): |
|
if file is None: |
|
return "", "" |
|
try: |
|
file_ext = os.path.splitext(file.name)[1].lower() |
|
|
|
if file_ext == '.parquet': |
|
df = pd.read_parquet(file.name, engine='pyarrow') |
|
content = df.head(10).to_markdown(index=False) |
|
return content, "parquet" |
|
elif file_ext == '.csv': |
|
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] |
|
for encoding in encodings: |
|
try: |
|
df = pd.read_csv(file.name, encoding=encoding) |
|
content = f"π Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n" |
|
content += f"\nπ Data Information:\n" |
|
content += f"- Total Rows: {len(df)}\n" |
|
content += f"- Total Columns: {len(df.columns)}\n" |
|
content += f"- Column List: {', '.join(df.columns)}\n" |
|
content += f"\nπ Column Data Types:\n" |
|
for col, dtype in df.dtypes.items(): |
|
content += f"- {col}: {dtype}\n" |
|
null_counts = df.isnull().sum() |
|
if null_counts.any(): |
|
content += f"\nβ οΈ Missing Values:\n" |
|
for col, null_count in null_counts[null_counts > 0].items(): |
|
content += f"- {col}: {null_count} missing\n" |
|
return content, "csv" |
|
except UnicodeDecodeError: |
|
continue |
|
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})") |
|
else: |
|
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] |
|
for encoding in encodings: |
|
try: |
|
with open(file.name, 'r', encoding=encoding) as f: |
|
content = f.read() |
|
return content, "text" |
|
except UnicodeDecodeError: |
|
continue |
|
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})") |
|
except Exception as e: |
|
return f"β Error reading file: {str(e)}", "error" |
|
|
|
def format_history(history): |
|
formatted_history = [] |
|
for user_msg, assistant_msg in history: |
|
formatted_history.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
formatted_history.append({"role": "assistant", "content": assistant_msg}) |
|
return formatted_history |
|
|
|
|
|
def chat(message, history, uploaded_file, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9): |
|
system_prefix = """μ λ μ¬λ¬λΆμ μΉκ·Όνκ³ μ§μ μΈ AI μ΄μμ€ν΄νΈμ
λλ€. λ€μκ³Ό κ°μ μμΉμΌλ‘ μν΅νκ² μ΅λλ€: |
|
|
|
1. π€ μΉκ·Όνκ³ κ³΅κ°μ μΈ νλλ‘ λν |
|
2. π‘ λͺ
ννκ³ μ΄ν΄νκΈ° μ¬μ΄ μ€λͺ
μ 곡 |
|
3. π― μ§λ¬Έμ μλλ₯Ό μ νν νμ
νμ¬ λ§μΆ€ν λ΅λ³ |
|
4. π νμν κ²½μ° μ
λ‘λλ νμΌ λ΄μ©μ μ°Έκ³ νμ¬ κ΅¬μ²΄μ μΈ λμ μ 곡 |
|
5. β¨ μΆκ°μ μΈ ν΅μ°°κ³Ό μ μμ ν΅ν κ°μΉ μλ λν |
|
|
|
νμ μμ λ°λ₯΄κ³ μΉμ νκ² μλ΅νλ©°, νμν κ²½μ° κ΅¬μ²΄μ μΈ μμλ μ€λͺ
μ μΆκ°νμ¬ |
|
μ΄ν΄λ₯Ό λκ² μ΅λλ€.""" |
|
|
|
|
|
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", title="AI μ΄μμ€ν΄νΈ π€") as demo: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 800px; margin: 0 auto;"> |
|
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">AI μ΄μμ€ν΄νΈ π€</h1> |
|
<h3 style="font-size: 1.2em; margin: 1em;">λΉμ μ λ λ ν λν ννΈλ π¬</h3> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot( |
|
height=600, |
|
label="λνμ°½ π¬", |
|
type="messages" |
|
) |
|
msg = gr.Textbox( |
|
label="λ©μμ§ μ
λ ₯", |
|
show_label=False, |
|
placeholder="무μμ΄λ λ¬Όμ΄λ³΄μΈμ... π", |
|
container=False |
|
) |
|
with gr.Row(): |
|
clear = gr.ClearButton([msg, chatbot], value="λνλ΄μ© μ§μ°κΈ°") |
|
send = gr.Button("보λ΄κΈ° π€") |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown("### νμΌ μ
λ‘λ π\nμ§μ νμ: ν
μ€νΈ, μ½λ, CSV, Parquet νμΌ") |
|
file_upload = gr.File( |
|
label="νμΌ μ ν", |
|
file_types=["text", ".csv", ".parquet"], |
|
type="filepath" |
|
) |
|
|
|
with gr.Accordion("κ³ κΈ μ€μ βοΈ", open=False): |
|
system_message = gr.Textbox(label="μμ€ν
λ©μμ§ π", value="") |
|
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="μ΅λ ν ν° μ π") |
|
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="μ°½μμ± μμ€ π‘οΈ") |
|
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="μλ΅ λ€μμ± π") |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["μλ
νμΈμ! μ΄λ€ λμμ΄ νμνμ κ°μ? π€"], |
|
["μ΄ λ΄μ©μ λν΄ μ’ λ μμΈν μ€λͺ
ν΄ μ£Όμ€ μ μλμ? π‘"], |
|
["μ κ° μ΄ν΄νκΈ° μ½κ² μ€λͺ
ν΄ μ£Όμκ² μ΄μ? π"], |
|
["μ΄ λ΄μ©μ μ€μ λ‘ μ΄λ»κ² νμ©ν μ μμκΉμ? π―"], |
|
["μΆκ°λ‘ μ‘°μΈν΄ μ£Όμ€ λ΄μ©μ΄ μμΌμ κ°μ? β¨"], |
|
["κΆκΈν μ μ΄ λ μλλ° μ¬μ€λ΄λ λ κΉμ? π€"], |
|
], |
|
inputs=msg, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |