ginipharm / app.py
openfree's picture
Update app.py
f2c0975 verified
raw
history blame
6.55 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
from typing import List, Tuple
# Hugging Face 토큰 μ„€μ •
HF_TOKEN = os.getenv("HF_TOKEN")
# Available LLM models
LLM_MODELS = {
"Mistral": "mistralai/Mistral-7B-Instruct-v0.2",
"Zephyr": "HuggingFaceH4/zephyr-7b-beta",
"OpenChat": "openchat/openchat-3.5",
"Llama2": "meta-llama/Llama-2-7b-chat-hf",
"Phi": "microsoft/phi-2",
"Neural": "nvidia/neural-chat-7b-v3-1",
"Starling": "HuggingFaceH4/starling-lm-7b-alpha"
}
# Default selected models
DEFAULT_MODELS = [
"mistralai/Mistral-7B-Instruct-v0.2",
"HuggingFaceH4/zephyr-7b-beta",
"openchat/openchat-3.5"
]
# Initialize clients with token
clients = {
model: InferenceClient(model, token=HF_TOKEN)
for model in LLM_MODELS.values()
}
def process_file(file) -> str:
if file is None:
return ""
if file.name.endswith(('.txt', '.md')):
return file.read().decode('utf-8')
return f"Uploaded file: {file.name}"
def respond_single(
client,
message: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
system_prefix = """λ°˜λ“œμ‹œ ν•œκΈ€λ‘œ 닡변할것. λ„ˆλŠ” 주어진 λ‚΄μš©μ„ 기반으둜 μƒμ„Έν•œ μ„€λͺ…κ³Ό Q&Aλ₯Ό μ œκ³΅ν•˜λŠ” 역할이닀.
μ•„μ£Ό μΉœμ ˆν•˜κ³  μžμ„Έν•˜κ²Œ μ„€λͺ…ν•˜λΌ."""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
response = ""
try:
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if hasattr(msg.choices[0].delta, 'content'):
token = msg.choices[0].delta.content
if token is not None:
response += token
yield response
except Exception as e:
yield f"Error: {str(e)}"
def respond_all(
message: str,
file,
history1: List[Tuple[str, str]],
history2: List[Tuple[str, str]],
history3: List[Tuple[str, str]],
selected_models: List[str],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
if file:
file_content = process_file(file)
message = f"{message}\n\nFile content:\n{file_content}"
while len(selected_models) < 3:
selected_models.append(selected_models[-1])
def generate(client, history):
return respond_single(
client,
message,
history,
system_message,
max_tokens,
temperature,
top_p,
)
return (
generate(clients[selected_models[0]], history1),
generate(clients[selected_models[1]], history2),
generate(clients[selected_models[2]], history3),
)
css = """
footer {visibility: hidden}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
with gr.Row():
model_choices = gr.Checkboxgroup(
choices=list(LLM_MODELS.values()),
value=DEFAULT_MODELS,
label="Select Models (Choose up to 3)",
interactive=True
)
with gr.Row():
with gr.Column():
chat1 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 1"),
textbox=False,
)
with gr.Column():
chat2 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 2"),
textbox=False,
)
with gr.Column():
chat3 = gr.ChatInterface(
lambda message, history: None,
chatbot=gr.Chatbot(height=400, label="Chat 3"),
textbox=False,
)
with gr.Row():
with gr.Column():
system_message = gr.Textbox(
value="당신은 μΉœμ ˆν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈμž…λ‹ˆλ‹€.",
label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=8000,
value=4000,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0,
maximum=1,
value=0.9,
step=0.05,
label="Top-p"
)
with gr.Row():
file_input = gr.File(label="Upload File (optional)")
msg_input = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
container=False
)
examples = [
["μƒμ„Έν•œ μ‚¬μš© 방법을 마치 화면을 λ³΄λ©΄μ„œ μ„€λͺ…ν•˜λ“―이 4000 토큰 이상 μžμ„Ένžˆ μ„€λͺ…ν•˜λΌ"],
["FAQ 20건을 μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜λΌ. 4000토큰 이상 μ‚¬μš©ν•˜λΌ."],
["μ‚¬μš© 방법과 차별점, νŠΉμ§•, 강점을 μ€‘μ‹¬μœΌλ‘œ 4000 토큰 이상 유튜브 μ˜μƒ 슀크립트 ν˜•νƒœλ‘œ μž‘μ„±ν•˜λΌ"],
["λ³Έ μ„œλΉ„μŠ€λ₯Ό SEO μ΅œμ ν™”ν•˜μ—¬ λΈ”λ‘œκ·Έ 포슀트둜 4000 토큰 이상 μž‘μ„±ν•˜λΌ"],
["계속 μ΄μ–΄μ„œ λ‹΅λ³€ν•˜λΌ"],
]
gr.Examples(
examples=examples,
inputs=msg_input,
cache_examples=False
)
def submit_message(message, file):
return respond_all(
message,
file,
chat1.chatbot.value,
chat2.chatbot.value,
chat3.chatbot.value,
model_choices.value,
system_message.value,
max_tokens.value,
temperature.value,
top_p.value,
)
msg_input.submit(
submit_message,
[msg_input, file_input],
[chat1.chatbot, chat2.chatbot, chat3.chatbot],
api_name="submit"
)
if __name__ == "__main__":
if not HF_TOKEN:
print("Warning: HF_TOKEN environment variable is not set")
demo.launch()