import gradio as gr from huggingface_hub import InferenceClient import os import pandas as pd from typing import List, Tuple # LLM Models Definition LLM_MODELS = { "Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default "Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct" # Backup model } def get_client(model_name="Cohere c4ai-crp-08-2024"): try: return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN")) except Exception: # If primary model fails, try backup model return InferenceClient(LLM_MODELS["Meta Llama3.3-70B"], token=os.getenv("HF_TOKEN")) def analyze_file_content(content, file_type): """Analyze file content and return structural summary""" if file_type in ['parquet', 'csv']: try: lines = content.split('\n') header = lines[0] columns = header.count('|') - 1 rows = len(lines) - 3 return f"πŸ“Š Dataset Structure: {columns} columns, {rows} data samples" except: return "❌ Dataset structure analysis failed" lines = content.split('\n') total_lines = len(lines) non_empty_lines = len([line for line in lines if line.strip()]) if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']): functions = len([line for line in lines if 'def ' in line]) classes = len([line for line in lines if 'class ' in line]) imports = len([line for line in lines if 'import ' in line or 'from ' in line]) return f"πŸ’» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})" paragraphs = content.count('\n\n') + 1 words = len(content.split()) return f"πŸ“ Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words" def read_uploaded_file(file): if file is None: return "", "" try: file_ext = os.path.splitext(file.name)[1].lower() if file_ext == '.parquet': df = pd.read_parquet(file.name, engine='pyarrow') content = df.head(10).to_markdown(index=False) return content, "parquet" elif file_ext == '.csv': encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] for encoding in encodings: try: df = pd.read_csv(file.name, encoding=encoding) content = f"πŸ“Š Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n" content += f"\nπŸ“ˆ Data Information:\n" content += f"- Total Rows: {len(df)}\n" content += f"- Total Columns: {len(df.columns)}\n" content += f"- Column List: {', '.join(df.columns)}\n" content += f"\nπŸ“‹ Column Data Types:\n" for col, dtype in df.dtypes.items(): content += f"- {col}: {dtype}\n" null_counts = df.isnull().sum() if null_counts.any(): content += f"\n⚠️ Missing Values:\n" for col, null_count in null_counts[null_counts > 0].items(): content += f"- {col}: {null_count} missing\n" return content, "csv" except UnicodeDecodeError: continue raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})") else: encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] for encoding in encodings: try: with open(file.name, 'r', encoding=encoding) as f: content = f.read() return content, "text" except UnicodeDecodeError: continue raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})") except Exception as e: return f"❌ Error reading file: {str(e)}", "error" def format_history(history): formatted_history = [] for user_msg, assistant_msg in history: formatted_history.append({"role": "user", "content": user_msg}) if assistant_msg: formatted_history.append({"role": "assistant", "content": assistant_msg}) return formatted_history # μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ μˆ˜μ • def chat(message, history, uploaded_file, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9): system_prefix = """μ €λŠ” μ—¬λŸ¬λΆ„μ˜ μΉœκ·Όν•˜κ³  지적인 AI μ–΄μ‹œμŠ€ν„΄νŠΈμž…λ‹ˆλ‹€. λ‹€μŒκ³Ό 같은 μ›μΉ™μœΌλ‘œ μ†Œν†΅ν•˜κ² μŠ΅λ‹ˆλ‹€: 1. 🀝 μΉœκ·Όν•˜κ³  곡감적인 νƒœλ„λ‘œ λŒ€ν™” 2. πŸ’‘ λͺ…ν™•ν•˜κ³  μ΄ν•΄ν•˜κΈ° μ‰¬μš΄ μ„€λͺ… 제곡 3. 🎯 질문의 μ˜λ„λ₯Ό μ •ν™•νžˆ νŒŒμ•…ν•˜μ—¬ λ§žμΆ€ν˜• λ‹΅λ³€ 4. πŸ“š ν•„μš”ν•œ 경우 μ—…λ‘œλ“œλœ 파일 λ‚΄μš©μ„ μ°Έκ³ ν•˜μ—¬ ꡬ체적인 도움 제곡 5. ✨ 좔가적인 톡찰과 μ œμ•ˆμ„ ν†΅ν•œ κ°€μΉ˜ μžˆλŠ” λŒ€ν™” 항상 예의 λ°”λ₯΄κ³  μΉœμ ˆν•˜κ²Œ μ‘λ‹΅ν•˜λ©°, ν•„μš”ν•œ 경우 ꡬ체적인 μ˜ˆμ‹œλ‚˜ μ„€λͺ…을 μΆ”κ°€ν•˜μ—¬ 이해λ₯Ό λ•κ² μŠ΅λ‹ˆλ‹€.""" # UI ν…μŠ€νŠΈ ν•œκΈ€ν™” with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", title="AI μ–΄μ‹œμŠ€ν„΄νŠΈ πŸ€–") as demo: gr.HTML( """

AI μ–΄μ‹œμŠ€ν„΄νŠΈ πŸ€–

λ‹Ήμ‹ μ˜ λ“ λ“ ν•œ λŒ€ν™” νŒŒνŠΈλ„ˆ πŸ’¬

""" ) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot( height=600, label="λŒ€ν™”μ°½ πŸ’¬", type="messages" ) msg = gr.Textbox( label="λ©”μ‹œμ§€ μž…λ ₯", show_label=False, placeholder="무엇이든 λ¬Όμ–΄λ³΄μ„Έμš”... πŸ’­", container=False ) with gr.Row(): clear = gr.ClearButton([msg, chatbot], value="λŒ€ν™”λ‚΄μš© μ§€μš°κΈ°") send = gr.Button("보내기 πŸ“€") with gr.Column(scale=1): gr.Markdown("### 파일 μ—…λ‘œλ“œ πŸ“\n지원 ν˜•μ‹: ν…μŠ€νŠΈ, μ½”λ“œ, CSV, Parquet 파일") file_upload = gr.File( label="파일 선택", file_types=["text", ".csv", ".parquet"], type="filepath" ) with gr.Accordion("κ³ κΈ‰ μ„€μ • βš™οΈ", open=False): system_message = gr.Textbox(label="μ‹œμŠ€ν…œ λ©”μ‹œμ§€ πŸ“", value="") max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="μ΅œλŒ€ 토큰 수 πŸ“Š") temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="μ°½μ˜μ„± μˆ˜μ€€ 🌑️") top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="응닡 λ‹€μ–‘μ„± πŸ“ˆ") # μ˜ˆμ‹œ 질문 μˆ˜μ • gr.Examples( examples=[ ["μ•ˆλ…•ν•˜μ„Έμš”! μ–΄λ–€ 도움이 ν•„μš”ν•˜μ‹ κ°€μš”? 🀝"], ["이 λ‚΄μš©μ— λŒ€ν•΄ μ’€ 더 μžμ„Ένžˆ μ„€λͺ…ν•΄ μ£Όμ‹€ 수 μžˆλ‚˜μš”? πŸ’‘"], ["μ œκ°€ μ΄ν•΄ν•˜κΈ° μ‰½κ²Œ μ„€λͺ…ν•΄ μ£Όμ‹œκ² μ–΄μš”? πŸ“š"], ["이 λ‚΄μš©μ„ μ‹€μ œλ‘œ μ–΄λ–»κ²Œ ν™œμš©ν•  수 μžˆμ„κΉŒμš”? 🎯"], ["μΆ”κ°€λ‘œ μ‘°μ–Έν•΄ μ£Όμ‹€ λ‚΄μš©μ΄ μžˆμœΌμ‹ κ°€μš”? ✨"], ["κΆκΈˆν•œ 점이 더 μžˆλŠ”λ° 여쭀봐도 λ κΉŒμš”? πŸ€”"], ], inputs=msg, ) if __name__ == "__main__": demo.launch()