import gradio as gr import requests import os import json from collections import deque # 환경 변수에서 API 토큰 가져오기 TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") # API 토큰이 설정되어 있는지 확인 if not TOKEN: raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.") # 대화 기록을 관리하는 큐 (최대 10개의 대화 기록을 유지) memory = deque(maxlen=10) def respond( message, history: list[tuple[str, str]], system_message="AI Assistant Role", max_tokens=512, temperature=0.7, top_p=0.95, ): # 시스템 메시지에 접두사 추가 system_prefix = "System: 입력어의 언어(영어, 한국어, 중국어, 일본어 등)에 따라 동일한 언어로 답변하라." full_system_message = f"{system_prefix}{system_message}" # 현재 대화 내용을 메모리에 추가 memory.append((message, None)) messages = [{"role": "system", "content": full_system_message}] # 메모리에서 대화 기록을 가져와 메시지 목록에 추가 for val in memory: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) headers = { "Authorization": f"Bearer {TOKEN}", "Content-Type": "application/json" } payload = { "model": "meta-llama/Meta-Llama-3.1-405B-Instruct", "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "messages": messages } response = requests.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload, stream=True) response_text = "" for chunk in response.iter_content(chunk_size=None): if chunk: chunk_data = chunk.decode('utf-8') response_json = json.loads(chunk_data) # content 영역만 출력 if "choices" in response_json: content = response_json["choices"][0]["message"]["content"] response_text = content # 마지막 대화에 모델의 응답을 추가하여 메모리에 저장 memory[-1] = (message, response_text) yield content theme = "Nymbo/Nymbo_Theme" # Gradio ChatInterface 설정 demo = gr.ChatInterface( fn=respond, theme=theme, additional_inputs=[ gr.Textbox(value="AI Assistant Role", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.queue(max_threads=20).launch()