text3d / app.py
ginipick's picture
Rename app (28).py to app.py
90af0dc verified
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
def fetch_kosdaq_data():
# ๋„ค์ด๋ฒ„ ์ฆ๊ถŒ ์ฝ”์Šค๋‹ฅ URL
url = "https://finance.naver.com/sise/sise_rise.naver?sosok=1"
try:
# ์›น ํŽ˜์ด์ง€ ์š”์ฒญ
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, "html.parser")
# ํ…Œ์ด๋ธ” ๋ฐ์ดํ„ฐ ์ถ”์ถœ
table = soup.find("table", class_="type_2")
rows = table.find_all("tr")
data = []
for row in rows:
columns = row.find_all("td")
if len(columns) >= 12: # 12๊ฐœ ์—ด์ด ์žˆ๋Š” ํ–‰๋งŒ ์ฒ˜๋ฆฌ
try:
# ๋ฐ์ดํ„ฐ ํŒŒ์‹ฑ
rank = columns[0].get_text(strip=True)
name = columns[1].get_text(strip=True)
current_price = columns[2].get_text(strip=True)
diff = columns[3].get_text(strip=True)
change_rate = columns[4].get_text(strip=True)
volume = columns[5].get_text(strip=True)
buy_price = columns[6].get_text(strip=True)
sell_price = columns[7].get_text(strip=True)
buy_total = columns[8].get_text(strip=True)
sell_total = columns[9].get_text(strip=True)
per = columns[10].get_text(strip=True)
roe = columns[11].get_text(strip=True)
data.append([
rank, name, current_price, diff, change_rate,
volume, buy_price, sell_price, buy_total,
sell_total, per, roe
])
except Exception as e:
print(f"Error parsing row: {e}")
continue
# DataFrame ์ƒ์„ฑ
columns = ["Rank", "Name", "Current Price", "Difference", "Change Rate",
"Volume", "Buy Price", "Sell Price", "Buy Total",
"Sell Total", "PER", "ROE"]
df = pd.DataFrame(data, columns=columns)
return df
except Exception as e:
print(f"Error occurred: {e}")
return None
def display_data():
df = fetch_kosdaq_data()
if df is not None and not df.empty:
return df
else:
return "Failed to fetch data or no data available. Please check the logs."
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# ๋„ค์ด๋ฒ„ ์ฆ๊ถŒ ์ฝ”์Šค๋‹ฅ ๋ฐ์ดํ„ฐ ์Šคํฌ๋ž˜ํ•‘")
fetch_button = gr.Button("๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ")
output_table = gr.Dataframe(headers=["Rank", "Name", "Current Price", "Difference", "Change Rate",
"Volume", "Buy Price", "Sell Price", "Buy Total",
"Sell Total", "PER", "ROE"]) # ๋ช…์‹œ์  ์—ด ์ด๋ฆ„ ์ง€์ •
fetch_button.click(fn=fetch_kosdaq_data, inputs=[], outputs=output_table)
return demo
demo = gradio_interface()
if __name__ == "__main__":
demo.launch()