girishwangikar commited on
Commit
a6545da
1 Parent(s): c8e4067

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -16
app.py CHANGED
@@ -2,12 +2,13 @@ import gradio as gr
2
  import random
3
  import torch
4
  import spaces
5
- from diffusers import DiffusionPipeline
6
  from langchain_groq import ChatGroq
7
  from langchain.schema import HumanMessage, SystemMessage
8
  import os
9
  from PIL import Image
10
  import numpy as np
 
 
11
 
12
  # Set up API keys
13
  GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
@@ -15,12 +16,6 @@ GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
15
  # Set up LLM
16
  llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=GROQ_API_KEY)
17
 
18
- # Set up DiffusionPipeline on CPU
19
- dtype = torch.bfloat16
20
- device = "cuda" if torch.cuda.is_available() else "cpu"
21
-
22
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
23
-
24
  MAX_SEED = np.iinfo(np.int32).max
25
  MAX_IMAGE_SIZE = 512
26
 
@@ -36,7 +31,6 @@ def generate_detailed_prompt(user_input):
36
  Given a simple description, create an elaborate and detailed prompt that can be used to generate high-quality images.
37
  Your response should be concise and no longer than 3 sentences.
38
  Use the following examples as a guide for the level of detail and creativity expected:
39
-
40
  """ + "\n\n".join([f"Input: {input}\nOutput: {output}" for input, output in few_shot_examples]))
41
 
42
  human_message = HumanMessage(content=f"Generate a detailed image prompt based on this input, using no more than 3 sentences: {user_input}")
@@ -44,19 +38,27 @@ def generate_detailed_prompt(user_input):
44
  response = llm([system_message, human_message])
45
  return response.content
46
 
 
 
 
 
47
  @spaces.GPU()
48
  def generate_image(prompt, width=512, height=512, num_inference_steps=4):
49
  seed = random.randint(0, MAX_SEED)
50
- generator = torch.Generator(device=device).manual_seed(seed)
51
- image = pipe(
52
- prompt=prompt,
 
 
53
  width=width,
54
  height=height,
55
  num_inference_steps=num_inference_steps,
56
- generator=generator,
57
- guidance_scale=0.0
58
- ).images[0]
59
-
 
 
60
  return image
61
 
62
  # Gradio UI setup
@@ -117,4 +119,4 @@ with gr.Blocks(css=css, theme='gradio/soft') as demo:
117
  outputs=[result]
118
  )
119
 
120
- demo.launch(share=True)
 
2
  import random
3
  import torch
4
  import spaces
 
5
  from langchain_groq import ChatGroq
6
  from langchain.schema import HumanMessage, SystemMessage
7
  import os
8
  from PIL import Image
9
  import numpy as np
10
+ import base64
11
+ from io import BytesIO
12
 
13
  # Set up API keys
14
  GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
 
16
  # Set up LLM
17
  llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=GROQ_API_KEY)
18
 
 
 
 
 
 
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 512
21
 
 
31
  Given a simple description, create an elaborate and detailed prompt that can be used to generate high-quality images.
32
  Your response should be concise and no longer than 3 sentences.
33
  Use the following examples as a guide for the level of detail and creativity expected:
 
34
  """ + "\n\n".join([f"Input: {input}\nOutput: {output}" for input, output in few_shot_examples]))
35
 
36
  human_message = HumanMessage(content=f"Generate a detailed image prompt based on this input, using no more than 3 sentences: {user_input}")
 
38
  response = llm([system_message, human_message])
39
  return response.content
40
 
41
+ # Initialize the schnell client
42
+ from huggingface_hub import InferenceClient
43
+ client = InferenceClient("black-forest-labs/FLUX.1-schnell")
44
+
45
  @spaces.GPU()
46
  def generate_image(prompt, width=512, height=512, num_inference_steps=4):
47
  seed = random.randint(0, MAX_SEED)
48
+
49
+ # Use the schnell client to generate the image
50
+ result = client.text_to_image(
51
+ prompt,
52
+ negative_prompt="",
53
  width=width,
54
  height=height,
55
  num_inference_steps=num_inference_steps,
56
+ guidance_scale=0.0,
57
+ seed=seed
58
+ )
59
+
60
+ # Convert the image to a PIL Image object
61
+ image = Image.open(BytesIO(result))
62
  return image
63
 
64
  # Gradio UI setup
 
119
  outputs=[result]
120
  )
121
 
122
+ demo.launch()