Spaces:
Running
Running
File size: 9,659 Bytes
1b0a56b 4434857 1b0a56b 4434857 1b0a56b 4434857 1b0a56b 4434857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import datasets
import os
import time
import subprocess
import logging
import json
from transformers.pipelines import TextClassificationPipeline
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction, check_column_mapping_keys_validity, text_classification_fix_column_mapping
from utils import read_scanners, write_scanners, read_inference_type, read_column_mapping, write_column_mapping, write_inference_type, convert_column_mapping_to_json
from wordings import CONFIRM_MAPPING_DETAILS_MD, CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_FAIL_RAW
HF_REPO_ID = 'HF_REPO_ID'
HF_SPACE_ID = 'SPACE_ID'
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
MAX_LABELS = 20
MAX_FEATURES = 20
EXAMPLE_MODEL_ID = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
EXAMPLE_DATA_ID = 'tweet_eval'
CONFIG_PATH='./config.yaml'
def try_submit(m_id, d_id, config, split, local):
all_mappings = read_column_mapping(CONFIG_PATH)
if "labels" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return gr.update(interactive=True)
label_mapping = all_mappings["labels"]
if "features" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return gr.update(interactive=True)
feature_mapping = all_mappings["features"]
# TODO: Set column mapping for some dataset such as `amazon_polarity`
if local:
command = [
"python",
"cli.py",
"--loader", "huggingface",
"--model", m_id,
"--dataset", d_id,
"--dataset_config", config,
"--dataset_split", split,
"--hf_token", os.environ.get(HF_WRITE_TOKEN),
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
"--output_format", "markdown",
"--output_portal", "huggingface",
"--feature_mapping", json.dumps(feature_mapping),
"--label_mapping", json.dumps(label_mapping),
"--scan_config", "../config.yaml",
]
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
start = time.time()
logging.info(f"Start local evaluation on {eval_str}")
evaluator = subprocess.Popen(
command,
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"),
stderr=subprocess.STDOUT,
)
result = evaluator.wait()
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
gr.Info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s")
else:
gr.Info("TODO: Submit task to an endpoint")
return gr.update(interactive=True) # Submit button
def check_dataset_and_get_config(dataset_id):
try:
configs = datasets.get_dataset_config_names(dataset_id)
return gr.Dropdown(configs, value=configs[0], visible=True)
except Exception:
# Dataset may not exist
pass
def check_dataset_and_get_split(dataset_id, dataset_config):
try:
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
return gr.Dropdown(splits, value=splits[0], visible=True)
except Exception:
# Dataset may not exist
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
pass
def get_demo():
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label='Dataset Config', visible=False)
dataset_split_input = gr.Dropdown(label='Dataset Split', visible=False)
with gr.Row():
example_input = gr.Markdown('Example Input', visible=False)
with gr.Row():
example_prediction = gr.Label(label='Model Prediction Sample', visible=False)
with gr.Row():
column_mappings = []
with gr.Column():
for _ in range(MAX_LABELS):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Column():
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
column_mappings.append(gr.Dropdown(visible=False))
with gr.Accordion(label='Model Wrap Advance Config (optional)', open=False):
run_local = gr.Checkbox(value=True, label="Run in this Space")
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
with gr.Accordion(label='Scanner Advance Config (optional)', open=False):
selected = read_scanners('./config.yaml')
scan_config = selected + ['data_leakage']
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
with gr.Row():
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=True,
size="lg",
)
@gr.on(triggers=[label.change for label in column_mappings],
inputs=[dataset_id_input, dataset_config_input, dataset_split_input, *column_mappings])
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
if labels is None:
return
labels = [*labels]
all_mappings = read_column_mapping(CONFIG_PATH)
if "labels" not in all_mappings.keys():
all_mappings["labels"] = dict()
for i, label in enumerate(labels[:MAX_LABELS]):
if label:
all_mappings["labels"][label] = ds_labels[i]
if "features" not in all_mappings.keys():
all_mappings["features"] = dict()
for i, feat in enumerate(labels[MAX_LABELS:(MAX_LABELS + MAX_FEATURES)]):
if feat:
all_mappings["features"][feat] = ds_features[i]
write_column_mapping(all_mappings)
def list_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split, model_id2label, model_features):
ds_labels, ds_features = get_labels_and_features_from_dataset(dataset_id, dataset_config, dataset_split)
if ds_labels is None or ds_features is None:
return [gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
model_labels = list(model_id2label.values())
lables = [gr.Dropdown(label=f"{label}", choices=model_labels, value=model_id2label[i], interactive=True, visible=True) for i, label in enumerate(ds_labels[:MAX_LABELS])]
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
features = [gr.Dropdown(label=f"{feature}", choices=ds_features, value=ds_features[0], interactive=True, visible=True) for feature in model_features]
features += [gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))]
return lables + features
@gr.on(triggers=[model_id_input.change, dataset_config_input.change])
def clear_column_mapping_config():
write_column_mapping(None)
@gr.on(triggers=[model_id_input.change, dataset_config_input.change, dataset_split_input.change],
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
outputs=[example_input, example_prediction, *column_mappings])
def check_model_and_show_prediction(model_id, dataset_id, dataset_config, dataset_split):
ppl = check_model(model_id)
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
gr.Warning("Please check your model.")
return (
gr.update(visible=False),
gr.update(visible=False),
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
)
model_id2label = ppl.model.config.id2label
model_features = ['text']
column_mappings = list_labels_and_features_from_dataset(
dataset_id,
dataset_config,
dataset_split,
model_id2label,
model_features
)
if ppl is None:
gr.Warning("Model not found")
return (
gr.update(visible=False),
gr.update(visible=False),
*column_mappings
)
prediction_input, prediction_output = get_example_prediction(ppl, dataset_id, dataset_config, dataset_split)
return (
gr.update(value=prediction_input, visible=True),
gr.update(value=prediction_output, visible=True),
*column_mappings
)
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
dataset_config_input.change(
check_dataset_and_get_split,
inputs=[dataset_id_input, dataset_config_input],
outputs=[dataset_split_input])
gr.on(
triggers=[
run_btn.click,
],
fn=try_submit,
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_local],
outputs=[run_btn]) |