Spaces:
Running
Running
import gradio as gr | |
import datasets | |
import logging | |
from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split | |
def get_records_from_dataset_repo(dataset_id): | |
dataset_config = check_dataset_and_get_config(dataset_id) | |
logging.info(f"Dataset {dataset_id} has configs {dataset_config}") | |
dataset_split = check_dataset_and_get_split(dataset_id, dataset_config[0]) | |
logging.info(f"Dataset {dataset_id} has splits {dataset_split}") | |
try: | |
ds = datasets.load_dataset(dataset_id, dataset_config[0])[dataset_split[0]] | |
df = ds.to_pandas() | |
return df | |
except Exception as e: | |
logging.warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}") | |
return None | |
def get_model_ids(ds): | |
logging.info(f"Dataset {ds} column names: {ds['model_id']}") | |
models = ds['model_id'].tolist() | |
# return unique elements in the list model_ids | |
model_ids = list(set(models)) | |
return model_ids | |
def get_dataset_ids(ds): | |
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}") | |
datasets = ds['dataset_id'].tolist() | |
dataset_ids = list(set(datasets)) | |
return dataset_ids | |
def get_types(ds): | |
# set all types for each column | |
types = [str(t) for t in ds.dtypes.to_list()] | |
types = [t.replace('object', 'markdown') for t in types] | |
types = [t.replace('float64', 'number') for t in types] | |
types = [t.replace('int64', 'number') for t in types] | |
return types | |
def get_display_df(df): | |
# style all elements in the model_id column | |
display_df = df.copy() | |
if display_df['model_id'].any(): | |
display_df['model_id'] = display_df['model_id'].apply(lambda x: f'<p href="https://huggingface.co/{x}" style="color:blue">π{x}</p>') | |
# style all elements in the dataset_id column | |
if display_df['dataset_id'].any(): | |
display_df['dataset_id'] = display_df['dataset_id'].apply(lambda x: f'<p href="https://huggingface.co/datasets/{x}" style="color:blue">π{x}</p>') | |
# style all elements in the report_link column | |
if display_df['report_link'].any(): | |
display_df['report_link'] = display_df['report_link'].apply(lambda x: f'<p href="{x}" style="color:blue">π{x}</p>') | |
return display_df | |
def get_demo(): | |
records = get_records_from_dataset_repo('ZeroCommand/test-giskard-report') | |
model_ids = get_model_ids(records) | |
dataset_ids = get_dataset_ids(records) | |
column_names = records.columns.tolist() | |
default_columns = ['model_id', 'dataset_id', 'total_issue', 'report_link'] | |
# set the default columns to show | |
default_df = records[default_columns] | |
types = get_types(default_df) | |
display_df = get_display_df(default_df) | |
with gr.Row(): | |
task_select = gr.Dropdown(label='Task', choices=['text_classification', 'tabular'], value='text_classification', interactive=True) | |
model_select = gr.Dropdown(label='Model id', choices=model_ids, interactive=True) | |
dataset_select = gr.Dropdown(label='Dataset id', choices=dataset_ids, interactive=True) | |
with gr.Row(): | |
columns_select = gr.CheckboxGroup(label='Show columns', choices=column_names, value=default_columns, interactive=True) | |
with gr.Row(): | |
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False) | |
def filter_table(model_id, dataset_id, columns, task): | |
# filter the table based on task | |
df = records[(records['hf_pipeline_type'] == task)] | |
# filter the table based on the model_id and dataset_id | |
if model_id: | |
df = records[(records['model_id'] == model_id)] | |
if dataset_id: | |
df = records[(records['dataset_id'] == dataset_id)] | |
# filter the table based on the columns | |
df = df[columns] | |
types = get_types(df) | |
display_df = get_display_df(df) | |
return ( | |
gr.update(value=display_df, datatype=types, interactive=False) | |
) |