ZeroCommand commited on
Commit
5927800
1 Parent(s): b4afb86

add leaderboard arg and inf token

Browse files
app_text_classification.py CHANGED
@@ -70,6 +70,7 @@ def get_demo(demo):
70
  run_local = gr.Checkbox(value=True, label="Run in this Space")
71
  use_inference = read_inference_type(uid) == "hf_inference_api"
72
  run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
 
73
 
74
  with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
75
  selected = read_scanners(uid)
@@ -105,7 +106,7 @@ def get_demo(demo):
105
 
106
  scanners.change(write_scanners, inputs=[scanners, uid_label])
107
 
108
- run_inference.change(write_inference_type, inputs=[run_inference, uid_label])
109
 
110
  gr.on(
111
  triggers=[label.change for label in column_mappings],
 
70
  run_local = gr.Checkbox(value=True, label="Run in this Space")
71
  use_inference = read_inference_type(uid) == "hf_inference_api"
72
  run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
73
+ inference_token = gr.Textbox(value="", label="HF Token for Inference API", visible=False)
74
 
75
  with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
76
  selected = read_scanners(uid)
 
106
 
107
  scanners.change(write_scanners, inputs=[scanners, uid_label])
108
 
109
+ run_inference.change(write_inference_type, inputs=[run_inference, uid_label], outputs=[inference_token])
110
 
111
  gr.on(
112
  triggers=[label.change for label in column_mappings],
io_utils.py CHANGED
@@ -1,6 +1,6 @@
1
  import os
2
  import subprocess
3
-
4
  import yaml
5
 
6
  import pipe
@@ -28,6 +28,7 @@ def read_scanners(uid):
28
  with open(get_yaml_path(uid), "r") as f:
29
  config = yaml.load(f, Loader=yaml.FullLoader)
30
  scanners = config.get("detectors", [])
 
31
  return scanners
32
 
33
 
@@ -39,6 +40,7 @@ def write_scanners(scanners, uid):
39
  config["detectors"] = scanners
40
  # save scanners to detectors in yaml
41
  yaml.dump(config, f, Dumper=Dumper)
 
42
 
43
 
44
  # read model_type from yaml file
@@ -47,6 +49,7 @@ def read_inference_type(uid):
47
  with open(get_yaml_path(uid), "r") as f:
48
  config = yaml.load(f, Loader=yaml.FullLoader)
49
  inference_type = config.get("inference_type", "")
 
50
  return inference_type
51
 
52
 
@@ -60,6 +63,9 @@ def write_inference_type(use_inference, uid):
60
  config["inference_type"] = "hf_pipeline"
61
  # save inference_type to inference_type in yaml
62
  yaml.dump(config, f, Dumper=Dumper)
 
 
 
63
 
64
 
65
  # read column mapping from yaml file
@@ -69,6 +75,7 @@ def read_column_mapping(uid):
69
  config = yaml.load(f, Loader=yaml.FullLoader)
70
  if config:
71
  column_mapping = config.get("column_mapping", dict())
 
72
  return column_mapping
73
 
74
 
@@ -85,6 +92,7 @@ def write_column_mapping(mapping, uid):
85
  with open(get_yaml_path(uid), "w") as f:
86
  # save column_mapping to column_mapping in yaml
87
  yaml.dump(config, f, Dumper=Dumper)
 
88
 
89
 
90
  # convert column mapping dataframe to json
@@ -107,6 +115,7 @@ def get_logs_file(uid):
107
  def write_log_to_user_file(id, log):
108
  with open(f"./tmp/{id}_log", "a") as f:
109
  f.write(log)
 
110
 
111
 
112
  def save_job_to_pipe(id, job, lock):
@@ -120,8 +129,6 @@ def pop_job_from_pipe():
120
  job_info = pipe.jobs.pop()
121
  write_log_to_user_file(job_info[0], f"Running job id {job_info[0]}\n")
122
  command = job_info[1]
123
- print(f"Running job id {job_info[0]}")
124
- print(f"Running command {command}")
125
 
126
  log_file = open(f"./tmp/{job_info[0]}_log", "a")
127
  subprocess.Popen(
 
1
  import os
2
  import subprocess
3
+ import gradio as gr
4
  import yaml
5
 
6
  import pipe
 
28
  with open(get_yaml_path(uid), "r") as f:
29
  config = yaml.load(f, Loader=yaml.FullLoader)
30
  scanners = config.get("detectors", [])
31
+ f.close()
32
  return scanners
33
 
34
 
 
40
  config["detectors"] = scanners
41
  # save scanners to detectors in yaml
42
  yaml.dump(config, f, Dumper=Dumper)
43
+ f.close()
44
 
45
 
46
  # read model_type from yaml file
 
49
  with open(get_yaml_path(uid), "r") as f:
50
  config = yaml.load(f, Loader=yaml.FullLoader)
51
  inference_type = config.get("inference_type", "")
52
+ f.close()
53
  return inference_type
54
 
55
 
 
63
  config["inference_type"] = "hf_pipeline"
64
  # save inference_type to inference_type in yaml
65
  yaml.dump(config, f, Dumper=Dumper)
66
+ f.close()
67
+ return (gr.update(visible=(use_inference == "hf_inference_api")))
68
+
69
 
70
 
71
  # read column mapping from yaml file
 
75
  config = yaml.load(f, Loader=yaml.FullLoader)
76
  if config:
77
  column_mapping = config.get("column_mapping", dict())
78
+ f.close()
79
  return column_mapping
80
 
81
 
 
92
  with open(get_yaml_path(uid), "w") as f:
93
  # save column_mapping to column_mapping in yaml
94
  yaml.dump(config, f, Dumper=Dumper)
95
+ f.close()
96
 
97
 
98
  # convert column mapping dataframe to json
 
115
  def write_log_to_user_file(id, log):
116
  with open(f"./tmp/{id}_log", "a") as f:
117
  f.write(log)
118
+ f.close()
119
 
120
 
121
  def save_job_to_pipe(id, job, lock):
 
129
  job_info = pipe.jobs.pop()
130
  write_log_to_user_file(job_info[0], f"Running job id {job_info[0]}\n")
131
  command = job_info[1]
 
 
132
 
133
  log_file = open(f"./tmp/{job_info[0]}_log", "a")
134
  subprocess.Popen(
text_classification_ui_helpers.py CHANGED
@@ -188,6 +188,10 @@ def try_submit(m_id, d_id, config, split, local, uid):
188
  return (gr.update(interactive=True), gr.update(visible=False))
189
  feature_mapping = all_mappings["features"]
190
 
 
 
 
 
191
  # TODO: Set column mapping for some dataset such as `amazon_polarity`
192
  if local:
193
  command = [
@@ -216,6 +220,8 @@ def try_submit(m_id, d_id, config, split, local, uid):
216
  json.dumps(label_mapping),
217
  "--scan_config",
218
  get_yaml_path(uid),
 
 
219
  ]
220
 
221
  eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
 
188
  return (gr.update(interactive=True), gr.update(visible=False))
189
  feature_mapping = all_mappings["features"]
190
 
191
+ leaderboard_dataset = None
192
+ if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
193
+ leaderboard_dataset = "ZeroCommand/test-giskard-report"
194
+
195
  # TODO: Set column mapping for some dataset such as `amazon_polarity`
196
  if local:
197
  command = [
 
220
  json.dumps(label_mapping),
221
  "--scan_config",
222
  get_yaml_path(uid),
223
+ "--leaderboard_dataset",
224
+ leaderboard_dataset,
225
  ]
226
 
227
  eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"