Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,171 +1,61 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
import torch
|
4 |
-
from
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
SAMPLE_RATE = feature_extractor.sampling_rate
|
23 |
-
SEED = 42
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
[
|
32 |
-
"'This is the best time of my life, Bartley,' she said happily.",
|
33 |
-
"A female speaker with a slightly low-pitched, quite monotone voice delivers her words at a slightly faster-than-average pace in a confined space with very clear audio.",
|
34 |
-
],
|
35 |
-
[
|
36 |
-
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
|
37 |
-
"A male speaker with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
|
38 |
-
],
|
39 |
-
[
|
40 |
-
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
|
41 |
-
"A male speaker with a low-pitched voice delivers his words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
|
42 |
-
],
|
43 |
-
]
|
44 |
|
45 |
-
number_normalizer = EnglishNumberNormalizer()
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
|
50 |
-
if text[-1] not in punctuation:
|
51 |
-
text = f"{text}."
|
52 |
-
|
53 |
-
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
|
54 |
-
|
55 |
-
def separate_abb(chunk):
|
56 |
-
chunk = chunk.replace(".","")
|
57 |
-
print(chunk)
|
58 |
-
return " ".join(chunk)
|
59 |
-
|
60 |
-
abbreviations = re.findall(abbreviations_pattern, text)
|
61 |
-
for abv in abbreviations:
|
62 |
-
if abv in text:
|
63 |
-
text = text.replace(abv, separate_abb(abv))
|
64 |
return text
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
inputs =
|
69 |
-
prompt = tokenizer(preprocess(text), return_tensors="pt").to(device)
|
70 |
-
|
71 |
-
set_seed(SEED)
|
72 |
-
generation = model.generate(
|
73 |
-
input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, do_sample=True, temperature=1.0
|
74 |
-
)
|
75 |
-
audio_arr = generation.cpu().numpy().squeeze()
|
76 |
|
77 |
-
|
78 |
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
border-radius: 9999px !important;
|
89 |
-
width: 13rem;
|
90 |
-
margin-top: 10px;
|
91 |
-
margin-left: auto;
|
92 |
-
flex: unset !important;
|
93 |
-
}
|
94 |
-
#share-btn {
|
95 |
-
all: initial;
|
96 |
-
color: #ffffff;
|
97 |
-
font-weight: 600;
|
98 |
-
cursor: pointer;
|
99 |
-
font-family: 'IBM Plex Sans', sans-serif;
|
100 |
-
margin-left: 0.5rem !important;
|
101 |
-
padding-top: 0.25rem !important;
|
102 |
-
padding-bottom: 0.25rem !important;
|
103 |
-
right:0;
|
104 |
-
}
|
105 |
-
#share-btn * {
|
106 |
-
all: unset !important;
|
107 |
-
}
|
108 |
-
#share-btn-container div:nth-child(-n+2){
|
109 |
-
width: auto !important;
|
110 |
-
min-height: 0px !important;
|
111 |
-
}
|
112 |
-
#share-btn-container .wrap {
|
113 |
-
display: none !important;
|
114 |
-
}
|
115 |
-
"""
|
116 |
-
with gr.Blocks(css=css) as block:
|
117 |
-
gr.HTML(
|
118 |
-
"""
|
119 |
-
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
120 |
-
<div
|
121 |
-
style="
|
122 |
-
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
|
123 |
-
"
|
124 |
-
>
|
125 |
-
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
|
126 |
-
Parler-TTS 🗣️
|
127 |
-
</h1>
|
128 |
-
</div>
|
129 |
-
</div>
|
130 |
-
"""
|
131 |
-
)
|
132 |
-
gr.HTML(
|
133 |
-
f"""
|
134 |
-
<p><a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> is a training and inference library for
|
135 |
-
high-fidelity text-to-speech (TTS) models. The model demonstrated here, <a href="https://huggingface.co/gitgato/tr-XTTS"> Parler-TTS Mini v0.1</a>,
|
136 |
-
is the first iteration model trained using 10k hours of narrated audiobooks. It generates high-quality speech
|
137 |
-
with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).</p>
|
138 |
-
<p>Tips for ensuring good generation:
|
139 |
-
<ul>
|
140 |
-
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
|
141 |
-
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
|
142 |
-
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
|
143 |
-
</ul>
|
144 |
-
</p>
|
145 |
-
"""
|
146 |
-
)
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
|
150 |
-
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
151 |
-
run_button = gr.Button("Generate Audio", variant="primary")
|
152 |
-
with gr.Column():
|
153 |
-
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
|
154 |
|
155 |
-
inputs = [input_text, description]
|
156 |
-
outputs = [audio_out]
|
157 |
-
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
|
158 |
-
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
|
159 |
-
gr.HTML(
|
160 |
-
"""
|
161 |
-
<p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
|
162 |
-
The v1 release of the model will be trained on this data, as well as inference optimisations, such as flash attention
|
163 |
-
and torch compile, that will improve the latency by 2-4x. If you want to find out more about how this model was trained and even fine-tune it yourself, check-out the
|
164 |
-
<a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> repository on GitHub.</p>
|
165 |
-
|
166 |
-
<p>The Parler-TTS codebase and its associated checkpoints are licensed under <a href='https://github.com/huggingface/parler-tts?tab=Apache-2.0-1-ov-file#readme'> Apache 2.0</a>.</p>
|
167 |
-
"""
|
168 |
-
)
|
169 |
|
170 |
-
block.queue()
|
171 |
-
block.launch(share=True)
|
|
|
1 |
+
mport gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import pipeline, SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech
|
5 |
+
|
6 |
+
model_id = "gitgato/tr-xtts" # update with your model id
|
7 |
+
# pipe = pipeline("automatic-speech-recognition", model=model_id)
|
8 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
9 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
10 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
11 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
|
12 |
+
|
13 |
+
# checkpoint = "microsoft/speecht5_tts"
|
14 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
15 |
+
|
16 |
+
replacements = [
|
17 |
+
("à", "a"),
|
18 |
+
("â", "a"),
|
19 |
+
("ç", "c"),
|
20 |
+
("è", "e"),
|
21 |
+
("ë", "e"),
|
22 |
+
("î", "i"),
|
23 |
+
("ï", "i"),
|
24 |
+
("ô", "o"),
|
25 |
+
("ù", "u"),
|
26 |
+
("û", "u"),
|
27 |
+
("ü", "u"),
|
28 |
+
]
|
29 |
|
|
|
|
|
30 |
|
31 |
+
title = "Text-to-Speech"
|
32 |
+
description = """
|
33 |
+
Demo for text-to-speech translation in French. Demo uses [Sandiago21/speecht5_finetuned_facebook_voxpopuli_french](https://huggingface.co/Sandiago21/speecht5_finetuned_facebook_voxpopuli_french) checkpoint, which is based on Microsoft's
|
34 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model and is fine-tuned in French Audio dataset
|
35 |
+
![Text-to-Speech (TTS)"](https://geekflare.com/wp-content/uploads/2021/07/texttospeech-1200x385.png "Diagram of Text-to-Speech (TTS)")
|
36 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
38 |
|
39 |
+
def cleanup_text(text):
|
40 |
+
for src, dst in replacements:
|
41 |
+
text = text.replace(src, dst)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
return text
|
43 |
|
44 |
+
def synthesize_speech(text):
|
45 |
+
text = cleanup_text(text)
|
46 |
+
inputs = processor(text=text, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
49 |
|
50 |
+
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
|
51 |
|
52 |
+
syntesize_speech_gradio = gr.Interface(
|
53 |
+
synthesize_speech,
|
54 |
+
inputs = gr.Textbox(label="Text", placeholder="Type something here..."),
|
55 |
+
outputs=gr.Audio(),
|
56 |
+
examples=["Hola, probando audio."],
|
57 |
+
title=title,
|
58 |
+
description=description,
|
59 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|