Upload 7 files
Browse files- bleu.py +584 -128
- calc_code_bleu.py +72 -0
- dataflow_match.py +9 -1274
- readme.txt +1 -0
- syntax_match.py +9 -1274
- weighted_ngram_match.py +4 -102
bleu.py
CHANGED
@@ -1,134 +1,590 @@
|
|
1 |
-
#
|
|
|
2 |
#
|
3 |
-
#
|
4 |
-
#
|
5 |
-
#
|
6 |
-
#
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# ==============================================================================
|
15 |
-
|
16 |
-
"""Python implementation of BLEU and smooth-BLEU.
|
17 |
-
|
18 |
-
This module provides a Python implementation of BLEU and smooth-BLEU.
|
19 |
-
Smooth BLEU is computed following the method outlined in the paper:
|
20 |
-
Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic
|
21 |
-
evaluation metrics for machine translation. COLING 2004.
|
22 |
-
"""
|
23 |
-
|
24 |
-
import collections
|
25 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
segment: text segment from which n-grams will be extracted.
|
33 |
-
max_order: maximum length in tokens of the n-grams returned by this
|
34 |
-
methods.
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
The Counter containing all n-grams upto max_order in segment
|
38 |
-
with a count of how many times each n-gram occurred.
|
39 |
-
"""
|
40 |
-
ngram_counts = collections.Counter()
|
41 |
-
for order in range(1, max_order + 1):
|
42 |
-
for i in range(0, len(segment) - order + 1):
|
43 |
-
ngram = tuple(segment[i:i+order])
|
44 |
-
ngram_counts[ngram] += 1
|
45 |
-
return ngram_counts
|
46 |
-
|
47 |
-
|
48 |
-
def compute_bleu(reference_corpus, translation_corpus, max_order=4,
|
49 |
-
smooth=False):
|
50 |
-
"""Computes BLEU score of translated segments against one or more references.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
reference_corpus: list of lists of references for each translation. Each
|
54 |
-
reference should be tokenized into a list of tokens.
|
55 |
-
translation_corpus: list of translations to score. Each translation
|
56 |
-
should be tokenized into a list of tokens.
|
57 |
-
max_order: Maximum n-gram order to use when computing BLEU score.
|
58 |
-
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
59 |
-
|
60 |
-
Returns:
|
61 |
-
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
|
62 |
-
precisions and brevity penalty.
|
63 |
-
"""
|
64 |
-
matches_by_order = [0] * max_order
|
65 |
-
possible_matches_by_order = [0] * max_order
|
66 |
-
reference_length = 0
|
67 |
-
translation_length = 0
|
68 |
-
for (references, translation) in zip(reference_corpus,
|
69 |
-
translation_corpus):
|
70 |
-
reference_length += min(len(r) for r in references)
|
71 |
-
translation_length += len(translation)
|
72 |
-
|
73 |
-
merged_ref_ngram_counts = collections.Counter()
|
74 |
for reference in references:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Natural Language Toolkit: BLEU Score
|
3 |
#
|
4 |
+
# Copyright (C) 2001-2020 NLTK Project
|
5 |
+
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
6 |
+
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
|
7 |
+
# URL: <http://nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""BLEU score implementation."""
|
11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import math
|
13 |
+
import sys
|
14 |
+
from fractions import Fraction
|
15 |
+
import warnings
|
16 |
+
from collections import Counter
|
17 |
+
|
18 |
+
from .utils import ngrams
|
19 |
+
import pdb
|
20 |
+
|
21 |
+
|
22 |
+
def sentence_bleu(
|
23 |
+
references,
|
24 |
+
hypothesis,
|
25 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
26 |
+
smoothing_function=None,
|
27 |
+
auto_reweigh=False,
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
31 |
+
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
32 |
+
"BLEU: a method for automatic evaluation of machine translation."
|
33 |
+
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
34 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
35 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
36 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
37 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
38 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
39 |
+
... 'that', 'party', 'direct']
|
40 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
41 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
42 |
+
... 'heed', 'Party', 'commands']
|
43 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
44 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
45 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
46 |
+
... 'Party']
|
47 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
48 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
49 |
+
... 'of', 'the', 'party']
|
50 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
51 |
+
0.5045...
|
52 |
+
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
53 |
+
value 0. This is because the precision for the order of n-grams without
|
54 |
+
overlap is 0, and the geometric mean in the final BLEU score computation
|
55 |
+
multiplies the 0 with the precision of other n-grams. This results in 0
|
56 |
+
(independently of the precision of the othe n-gram orders). The following
|
57 |
+
example has zero 3-gram and 4-gram overlaps:
|
58 |
+
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
59 |
+
0.0
|
60 |
+
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
61 |
+
function can be used.
|
62 |
+
>>> chencherry = SmoothingFunction()
|
63 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
64 |
+
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
65 |
+
0.0370...
|
66 |
+
The default BLEU calculates a score for up to 4-grams using uniform
|
67 |
+
weights (this is called BLEU-4). To evaluate your translations with
|
68 |
+
higher/lower order ngrams, use customized weights. E.g. when accounting
|
69 |
+
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
70 |
+
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
71 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
72 |
+
0.3920...
|
73 |
+
:param references: reference sentences
|
74 |
+
:type references: list(list(str))
|
75 |
+
:param hypothesis: a hypothesis sentence
|
76 |
+
:type hypothesis: list(str)
|
77 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
78 |
+
:type weights: list(float)
|
79 |
+
:param smoothing_function:
|
80 |
+
:type smoothing_function: SmoothingFunction
|
81 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
82 |
+
:type auto_reweigh: bool
|
83 |
+
:return: The sentence-level BLEU score.
|
84 |
+
:rtype: float
|
85 |
+
"""
|
86 |
+
return corpus_bleu(
|
87 |
+
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
def corpus_bleu(
|
92 |
+
list_of_references,
|
93 |
+
hypotheses,
|
94 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
95 |
+
smoothing_function=None,
|
96 |
+
auto_reweigh=False,
|
97 |
+
):
|
98 |
+
"""
|
99 |
+
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
100 |
+
the hypotheses and their respective references.
|
101 |
+
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
102 |
+
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
103 |
+
the micro-average precision (i.e. summing the numerators and denominators
|
104 |
+
for each hypothesis-reference(s) pairs before the division).
|
105 |
+
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
106 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
107 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
108 |
+
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
109 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
110 |
+
... 'heed', 'Party', 'commands']
|
111 |
+
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
112 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
113 |
+
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
114 |
+
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
115 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
116 |
+
... 'of', 'the', 'party']
|
117 |
+
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
118 |
+
... 'interested', 'in', 'world', 'history']
|
119 |
+
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
120 |
+
... 'because', 'he', 'read', 'the', 'book']
|
121 |
+
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
122 |
+
>>> hypotheses = [hyp1, hyp2]
|
123 |
+
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
124 |
+
0.5920...
|
125 |
+
The example below show that corpus_bleu() is different from averaging
|
126 |
+
sentence_bleu() for hypotheses
|
127 |
+
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
128 |
+
>>> score2 = sentence_bleu([ref2a], hyp2)
|
129 |
+
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
130 |
+
0.6223...
|
131 |
+
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
132 |
+
:type list_of_references: list(list(list(str)))
|
133 |
+
:param hypotheses: a list of hypothesis sentences
|
134 |
+
:type hypotheses: list(list(str))
|
135 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
136 |
+
:type weights: list(float)
|
137 |
+
:param smoothing_function:
|
138 |
+
:type smoothing_function: SmoothingFunction
|
139 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
140 |
+
:type auto_reweigh: bool
|
141 |
+
:return: The corpus-level BLEU score.
|
142 |
+
:rtype: float
|
143 |
+
"""
|
144 |
+
# Before proceeding to compute BLEU, perform sanity checks.
|
145 |
+
|
146 |
+
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
147 |
+
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
148 |
+
hyp_lengths, ref_lengths = 0, 0
|
149 |
+
|
150 |
+
assert len(list_of_references) == len(hypotheses), (
|
151 |
+
"The number of hypotheses and their reference(s) should be the " "same "
|
152 |
+
)
|
153 |
+
|
154 |
+
# Iterate through each hypothesis and their corresponding references.
|
155 |
+
for references, hypothesis in zip(list_of_references, hypotheses):
|
156 |
+
# For each order of ngram, calculate the numerator and
|
157 |
+
# denominator for the corpus-level modified precision.
|
158 |
+
for i, _ in enumerate(weights, start=1):
|
159 |
+
p_i = modified_precision(references, hypothesis, i)
|
160 |
+
p_numerators[i] += p_i.numerator
|
161 |
+
p_denominators[i] += p_i.denominator
|
162 |
+
|
163 |
+
# Calculate the hypothesis length and the closest reference length.
|
164 |
+
# Adds them to the corpus-level hypothesis and reference counts.
|
165 |
+
hyp_len = len(hypothesis)
|
166 |
+
hyp_lengths += hyp_len
|
167 |
+
ref_lengths += closest_ref_length(references, hyp_len)
|
168 |
+
|
169 |
+
# Calculate corpus-level brevity penalty.
|
170 |
+
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
171 |
+
|
172 |
+
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
173 |
+
# order of n-grams < 4 and weights is set at default.
|
174 |
+
if auto_reweigh:
|
175 |
+
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
176 |
+
weights = (1 / hyp_lengths,) * hyp_lengths
|
177 |
+
|
178 |
+
# Collects the various precision values for the different ngram orders.
|
179 |
+
p_n = [
|
180 |
+
Fraction(p_numerators[i], p_denominators[i], _normalize=False)
|
181 |
+
for i, _ in enumerate(weights, start=1)
|
182 |
+
]
|
183 |
+
|
184 |
+
# Returns 0 if there's no matching n-grams
|
185 |
+
# We only need to check for p_numerators[1] == 0, since if there's
|
186 |
+
# no unigrams, there won't be any higher order ngrams.
|
187 |
+
if p_numerators[1] == 0:
|
188 |
+
return 0
|
189 |
+
|
190 |
+
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
191 |
+
if not smoothing_function:
|
192 |
+
smoothing_function = SmoothingFunction().method1
|
193 |
+
# Smoothen the modified precision.
|
194 |
+
# Note: smoothing_function() may convert values into floats;
|
195 |
+
# it tries to retain the Fraction object as much as the
|
196 |
+
# smoothing method allows.
|
197 |
+
p_n = smoothing_function(
|
198 |
+
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
199 |
+
)
|
200 |
+
s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n))
|
201 |
+
s = bp * math.exp(math.fsum(s))
|
202 |
+
return s
|
203 |
+
|
204 |
|
205 |
+
def modified_precision(references, hypothesis, n):
|
206 |
+
"""
|
207 |
+
Calculate modified ngram precision.
|
208 |
+
The normal precision method may lead to some wrong translations with
|
209 |
+
high-precision, e.g., the translation, in which a word of reference
|
210 |
+
repeats several times, has very high precision.
|
211 |
+
This function only returns the Fraction object that contains the numerator
|
212 |
+
and denominator necessary to calculate the corpus-level precision.
|
213 |
+
To calculate the modified precision for a single pair of hypothesis and
|
214 |
+
references, cast the Fraction object into a float.
|
215 |
+
The famous "the the the ... " example shows that you can get BLEU precision
|
216 |
+
by duplicating high frequency words.
|
217 |
+
>>> reference1 = 'the cat is on the mat'.split()
|
218 |
+
>>> reference2 = 'there is a cat on the mat'.split()
|
219 |
+
>>> hypothesis1 = 'the the the the the the the'.split()
|
220 |
+
>>> references = [reference1, reference2]
|
221 |
+
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
222 |
+
0.2857...
|
223 |
+
In the modified n-gram precision, a reference word will be considered
|
224 |
+
exhausted after a matching hypothesis word is identified, e.g.
|
225 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
226 |
+
... 'ensures', 'that', 'the', 'military', 'will',
|
227 |
+
... 'forever', 'heed', 'Party', 'commands']
|
228 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
229 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
230 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
231 |
+
... 'Party']
|
232 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
233 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
234 |
+
... 'of', 'the', 'party']
|
235 |
+
>>> hypothesis = 'of the'.split()
|
236 |
+
>>> references = [reference1, reference2, reference3]
|
237 |
+
>>> float(modified_precision(references, hypothesis, n=1))
|
238 |
+
1.0
|
239 |
+
>>> float(modified_precision(references, hypothesis, n=2))
|
240 |
+
1.0
|
241 |
+
An example of a normal machine translation hypothesis:
|
242 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
243 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
244 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
245 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
246 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
247 |
+
... 'that', 'party', 'direct']
|
248 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
249 |
+
... 'ensures', 'that', 'the', 'military', 'will',
|
250 |
+
... 'forever', 'heed', 'Party', 'commands']
|
251 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
252 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
253 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
254 |
+
... 'Party']
|
255 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
256 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
257 |
+
... 'of', 'the', 'party']
|
258 |
+
>>> references = [reference1, reference2, reference3]
|
259 |
+
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
260 |
+
0.9444...
|
261 |
+
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
|
262 |
+
0.5714...
|
263 |
+
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
|
264 |
+
0.5882352941176471
|
265 |
+
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
|
266 |
+
0.07692...
|
267 |
+
:param references: A list of reference translations.
|
268 |
+
:type references: list(list(str))
|
269 |
+
:param hypothesis: A hypothesis translation.
|
270 |
+
:type hypothesis: list(str)
|
271 |
+
:param n: The ngram order.
|
272 |
+
:type n: int
|
273 |
+
:return: BLEU's modified precision for the nth order ngram.
|
274 |
+
:rtype: Fraction
|
275 |
+
"""
|
276 |
+
# Extracts all ngrams in hypothesis
|
277 |
+
# Set an empty Counter if hypothesis is empty.
|
278 |
|
279 |
+
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
280 |
+
# Extract a union of references' counts.
|
281 |
+
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
282 |
+
max_counts = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
for reference in references:
|
284 |
+
reference_counts = (
|
285 |
+
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
286 |
+
)
|
287 |
+
for ngram in counts:
|
288 |
+
max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
|
289 |
+
|
290 |
+
# Assigns the intersection between hypothesis and references' counts.
|
291 |
+
clipped_counts = {
|
292 |
+
ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
293 |
+
}
|
294 |
+
|
295 |
+
numerator = sum(clipped_counts.values())
|
296 |
+
# Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
297 |
+
# Usually this happens when the ngram order is > len(reference).
|
298 |
+
denominator = max(1, sum(counts.values()))
|
299 |
+
|
300 |
+
return Fraction(numerator, denominator, _normalize=False)
|
301 |
+
|
302 |
+
|
303 |
+
def closest_ref_length(references, hyp_len):
|
304 |
+
"""
|
305 |
+
This function finds the reference that is the closest length to the
|
306 |
+
hypothesis. The closest reference length is referred to as *r* variable
|
307 |
+
from the brevity penalty formula in Papineni et. al. (2002)
|
308 |
+
:param references: A list of reference translations.
|
309 |
+
:type references: list(list(str))
|
310 |
+
:param hyp_len: The length of the hypothesis.
|
311 |
+
:type hyp_len: int
|
312 |
+
:return: The length of the reference that's closest to the hypothesis.
|
313 |
+
:rtype: int
|
314 |
+
"""
|
315 |
+
ref_lens = (len(reference) for reference in references)
|
316 |
+
closest_ref_len = min(
|
317 |
+
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
318 |
+
)
|
319 |
+
return closest_ref_len
|
320 |
+
|
321 |
+
|
322 |
+
def brevity_penalty(closest_ref_len, hyp_len):
|
323 |
+
"""
|
324 |
+
Calculate brevity penalty.
|
325 |
+
As the modified n-gram precision still has the problem from the short
|
326 |
+
length sentence, brevity penalty is used to modify the overall BLEU
|
327 |
+
score according to length.
|
328 |
+
An example from the paper. There are three references with length 12, 15
|
329 |
+
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
330 |
+
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
331 |
+
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
332 |
+
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
333 |
+
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
334 |
+
>>> references = [reference1, reference2, reference3]
|
335 |
+
>>> hyp_len = len(hypothesis)
|
336 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
337 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
338 |
+
1.0
|
339 |
+
In case a hypothesis translation is shorter than the references, penalty is
|
340 |
+
applied.
|
341 |
+
>>> references = [['a'] * 28, ['a'] * 28]
|
342 |
+
>>> hypothesis = ['a'] * 12
|
343 |
+
>>> hyp_len = len(hypothesis)
|
344 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
345 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
346 |
+
0.2635971381157267
|
347 |
+
The length of the closest reference is used to compute the penalty. If the
|
348 |
+
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
349 |
+
penalty is applied because the hypothesis length (12) is less then the
|
350 |
+
closest reference length (13).
|
351 |
+
>>> references = [['a'] * 13, ['a'] * 2]
|
352 |
+
>>> hypothesis = ['a'] * 12
|
353 |
+
>>> hyp_len = len(hypothesis)
|
354 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
355 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
356 |
+
0.9200...
|
357 |
+
The brevity penalty doesn't depend on reference order. More importantly,
|
358 |
+
when two reference sentences are at the same distance, the shortest
|
359 |
+
reference sentence length is used.
|
360 |
+
>>> references = [['a'] * 13, ['a'] * 11]
|
361 |
+
>>> hypothesis = ['a'] * 12
|
362 |
+
>>> hyp_len = len(hypothesis)
|
363 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
364 |
+
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
365 |
+
>>> hyp_len = len(hypothesis)
|
366 |
+
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
367 |
+
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
368 |
+
>>> bp1 == bp2 == 1
|
369 |
+
True
|
370 |
+
A test example from mteval-v13a.pl (starting from the line 705):
|
371 |
+
>>> references = [['a'] * 11, ['a'] * 8]
|
372 |
+
>>> hypothesis = ['a'] * 7
|
373 |
+
>>> hyp_len = len(hypothesis)
|
374 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
375 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
376 |
+
0.8668...
|
377 |
+
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
378 |
+
>>> hypothesis = ['a'] * 7
|
379 |
+
>>> hyp_len = len(hypothesis)
|
380 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
381 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
382 |
+
1.0
|
383 |
+
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
384 |
+
sum of all the hypotheses' lengths for a corpus
|
385 |
+
:type hyp_len: int
|
386 |
+
:param closest_ref_len: The length of the closest reference for a single
|
387 |
+
hypothesis OR the sum of all the closest references for every hypotheses.
|
388 |
+
:type closest_ref_len: int
|
389 |
+
:return: BLEU's brevity penalty.
|
390 |
+
:rtype: float
|
391 |
+
"""
|
392 |
+
if hyp_len > closest_ref_len:
|
393 |
+
return 1
|
394 |
+
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
395 |
+
elif hyp_len == 0:
|
396 |
+
return 0
|
397 |
else:
|
398 |
+
return math.exp(1 - closest_ref_len / hyp_len)
|
399 |
+
|
400 |
+
|
401 |
+
class SmoothingFunction:
|
402 |
+
"""
|
403 |
+
This is an implementation of the smoothing techniques
|
404 |
+
for segment-level BLEU scores that was presented in
|
405 |
+
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
406 |
+
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
407 |
+
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
408 |
+
"""
|
409 |
+
|
410 |
+
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
411 |
+
"""
|
412 |
+
This will initialize the parameters required for the various smoothing
|
413 |
+
techniques, the default values are set to the numbers used in the
|
414 |
+
experiments from Chen and Cherry (2014).
|
415 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
416 |
+
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
417 |
+
... 'commands', 'of', 'the', 'party']
|
418 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
419 |
+
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
420 |
+
... 'Party', 'commands']
|
421 |
+
>>> chencherry = SmoothingFunction()
|
422 |
+
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
423 |
+
0.4118...
|
424 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
425 |
+
0.4118...
|
426 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
427 |
+
0.4118...
|
428 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
429 |
+
0.4489...
|
430 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
431 |
+
0.4118...
|
432 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
433 |
+
0.4118...
|
434 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
435 |
+
0.4905...
|
436 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
437 |
+
0.4135...
|
438 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
439 |
+
0.4905...
|
440 |
+
:param epsilon: the epsilon value use in method 1
|
441 |
+
:type epsilon: float
|
442 |
+
:param alpha: the alpha value use in method 6
|
443 |
+
:type alpha: int
|
444 |
+
:param k: the k value use in method 4
|
445 |
+
:type k: int
|
446 |
+
"""
|
447 |
+
self.epsilon = epsilon
|
448 |
+
self.alpha = alpha
|
449 |
+
self.k = k
|
450 |
+
|
451 |
+
def method0(self, p_n, *args, **kwargs):
|
452 |
+
"""
|
453 |
+
No smoothing.
|
454 |
+
"""
|
455 |
+
p_n_new = []
|
456 |
+
for i, p_i in enumerate(p_n):
|
457 |
+
if p_i.numerator != 0:
|
458 |
+
p_n_new.append(p_i)
|
459 |
+
else:
|
460 |
+
_msg = str(
|
461 |
+
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
462 |
+
"Therefore the BLEU score evaluates to 0, independently of\n"
|
463 |
+
"how many N-gram overlaps of lower order it contains.\n"
|
464 |
+
"Consider using lower n-gram order or use "
|
465 |
+
"SmoothingFunction()"
|
466 |
+
).format(i + 1)
|
467 |
+
warnings.warn(_msg)
|
468 |
+
# When numerator==0 where denonminator==0 or !=0, the result
|
469 |
+
# for the precision score should be equal to 0 or undefined.
|
470 |
+
# Due to BLEU geometric mean computation in logarithm space,
|
471 |
+
# we we need to take the return sys.float_info.min such that
|
472 |
+
# math.log(sys.float_info.min) returns a 0 precision score.
|
473 |
+
p_n_new.append(sys.float_info.min)
|
474 |
+
return p_n_new
|
475 |
+
|
476 |
+
def method1(self, p_n, *args, **kwargs):
|
477 |
+
"""
|
478 |
+
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
479 |
+
"""
|
480 |
+
return [
|
481 |
+
(p_i.numerator + self.epsilon) / p_i.denominator
|
482 |
+
if p_i.numerator == 0
|
483 |
+
else p_i
|
484 |
+
for p_i in p_n
|
485 |
+
]
|
486 |
+
|
487 |
+
def method2(self, p_n, *args, **kwargs):
|
488 |
+
"""
|
489 |
+
Smoothing method 2: Add 1 to both numerator and denominator from
|
490 |
+
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
491 |
+
machine translation quality using longest common subsequence and
|
492 |
+
skip-bigram statistics. In ACL04.
|
493 |
+
"""
|
494 |
+
return [
|
495 |
+
Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False)
|
496 |
+
for p_i in p_n
|
497 |
+
]
|
498 |
+
|
499 |
+
def method3(self, p_n, *args, **kwargs):
|
500 |
+
"""
|
501 |
+
Smoothing method 3: NIST geometric sequence smoothing
|
502 |
+
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
503 |
+
precision score whose matching n-gram count is null.
|
504 |
+
k is 1 for the first 'n' value for which the n-gram match count is null/
|
505 |
+
For example, if the text contains:
|
506 |
+
- one 2-gram match
|
507 |
+
- and (consequently) two 1-gram matches
|
508 |
+
the n-gram count for each individual precision score would be:
|
509 |
+
- n=1 => prec_count = 2 (two unigrams)
|
510 |
+
- n=2 => prec_count = 1 (one bigram)
|
511 |
+
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
512 |
+
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
513 |
+
"""
|
514 |
+
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
515 |
+
for i, p_i in enumerate(p_n):
|
516 |
+
if p_i.numerator == 0:
|
517 |
+
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
518 |
+
incvnt += 1
|
519 |
+
return p_n
|
520 |
+
|
521 |
+
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
522 |
+
"""
|
523 |
+
Smoothing method 4:
|
524 |
+
Shorter translations may have inflated precision values due to having
|
525 |
+
smaller denominators; therefore, we give them proportionally
|
526 |
+
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
527 |
+
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
528 |
+
"""
|
529 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
530 |
+
for i, p_i in enumerate(p_n):
|
531 |
+
if p_i.numerator == 0 and hyp_len != 0:
|
532 |
+
incvnt = i + 1 * self.k / math.log(
|
533 |
+
hyp_len
|
534 |
+
) # Note that this K is different from the K from NIST.
|
535 |
+
p_n[i] = incvnt / p_i.denominator
|
536 |
+
return p_n
|
537 |
+
|
538 |
+
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
539 |
+
"""
|
540 |
+
Smoothing method 5:
|
541 |
+
The matched counts for similar values of n should be similar. To a
|
542 |
+
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
|
543 |
+
matched counts.
|
544 |
+
"""
|
545 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
546 |
+
m = {}
|
547 |
+
# Requires an precision value for an addition ngram order.
|
548 |
+
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
549 |
+
m[-1] = p_n[0] + 1
|
550 |
+
for i, p_i in enumerate(p_n):
|
551 |
+
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
552 |
+
m[i] = p_n[i]
|
553 |
+
return p_n
|
554 |
+
|
555 |
+
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
556 |
+
"""
|
557 |
+
Smoothing method 6:
|
558 |
+
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
559 |
+
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
560 |
+
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
|
561 |
+
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
562 |
+
Gradient Ascent. In NAACL.
|
563 |
+
"""
|
564 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
565 |
+
# This smoothing only works when p_1 and p_2 is non-zero.
|
566 |
+
# Raise an error with an appropriate message when the input is too short
|
567 |
+
# to use this smoothing technique.
|
568 |
+
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
569 |
+
for i, p_i in enumerate(p_n):
|
570 |
+
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
571 |
+
continue
|
572 |
+
else:
|
573 |
+
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
574 |
+
# No. of ngrams in translation that matches the reference.
|
575 |
+
m = p_i.numerator
|
576 |
+
# No. of ngrams in translation.
|
577 |
+
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
578 |
+
# Calculates the interpolated precision.
|
579 |
+
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
580 |
+
return p_n
|
581 |
+
|
582 |
+
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
583 |
+
"""
|
584 |
+
Smoothing method 7:
|
585 |
+
Interpolates methods 4 and 5.
|
586 |
+
"""
|
587 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
588 |
+
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
589 |
+
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
590 |
+
return p_n
|
calc_code_bleu.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# -*- coding:utf-8 -*-
|
5 |
+
import argparse
|
6 |
+
from .bleu import corpus_bleu
|
7 |
+
from .weighted_ngram_match import corpus_weighted_ngram_match
|
8 |
+
from .syntax_match import corpus_syntax_match
|
9 |
+
from .dataflow_match import corpus_dataflow_match
|
10 |
+
import os
|
11 |
+
|
12 |
+
def calculate(predictions, references, language="python", alpha=0.25, beta=0.25, gamma=0.25, theta=0.25):
|
13 |
+
|
14 |
+
# preprocess inputs
|
15 |
+
pre_references = [[s.strip() for s in my_list] for my_list in references]
|
16 |
+
hypothesis = [s.strip() for s in predictions]
|
17 |
+
|
18 |
+
for i in range(len(pre_references)):
|
19 |
+
assert len(hypothesis) == len(pre_references[i])
|
20 |
+
|
21 |
+
references = []
|
22 |
+
for i in range(len(hypothesis)):
|
23 |
+
ref_for_instance = []
|
24 |
+
for j in range(len(pre_references)):
|
25 |
+
ref_for_instance.append(pre_references[j][i])
|
26 |
+
references.append(ref_for_instance)
|
27 |
+
assert len(references) == len(pre_references)*len(hypothesis)
|
28 |
+
|
29 |
+
|
30 |
+
# calculate ngram match (BLEU)
|
31 |
+
tokenized_hyps = [x.split() for x in hypothesis]
|
32 |
+
tokenized_refs = [[x.split() for x in reference] for reference in references]
|
33 |
+
|
34 |
+
ngram_match_score = corpus_bleu(tokenized_refs,tokenized_hyps)
|
35 |
+
|
36 |
+
# calculate weighted ngram match
|
37 |
+
# from os import listdir
|
38 |
+
# from os.path import isfile, join
|
39 |
+
# onlyfiles = [f for f in listdir("./keywords") if isfile(join("keywords", f))]
|
40 |
+
# print(onlyfiles)
|
41 |
+
curr_path = os.path.dirname(os.path.abspath(__file__))
|
42 |
+
keywords = [x.strip() for x in open(curr_path + "/keywords/" + language +'.txt', 'r', encoding='utf-8').readlines()]
|
43 |
+
def make_weights(reference_tokens, key_word_list):
|
44 |
+
return {token:1 if token in key_word_list else 0.2 \
|
45 |
+
for token in reference_tokens}
|
46 |
+
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)]\
|
47 |
+
for reference_tokens in reference] for reference in tokenized_refs]
|
48 |
+
|
49 |
+
weighted_ngram_match_score = corpus_weighted_ngram_match(tokenized_refs_with_weights,tokenized_hyps)
|
50 |
+
|
51 |
+
# calculate syntax match
|
52 |
+
syntax_match_score = corpus_syntax_match(references, hypothesis, language)
|
53 |
+
|
54 |
+
# calculate dataflow match
|
55 |
+
dataflow_match_score = corpus_dataflow_match(references, hypothesis, language)
|
56 |
+
|
57 |
+
code_bleu_score = alpha*ngram_match_score\
|
58 |
+
+ beta*weighted_ngram_match_score\
|
59 |
+
+ gamma*syntax_match_score\
|
60 |
+
+ theta*dataflow_match_score
|
61 |
+
|
62 |
+
return {
|
63 |
+
"ngram_match_score": ngram_match_score,
|
64 |
+
"weighted_ngram_match_score": weighted_ngram_match_score,
|
65 |
+
"syntax_match_score": syntax_match_score,
|
66 |
+
"dataflow_match_score": dataflow_match_score,
|
67 |
+
"code_bleu_score": code_bleu_score
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
dataflow_match.py
CHANGED
@@ -1,1280 +1,14 @@
|
|
1 |
# Copyright (c) Microsoft Corporation.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
from tree_sitter import Language, Parser
|
6 |
import pdb
|
7 |
-
|
8 |
-
import re
|
9 |
-
from io import StringIO
|
10 |
-
import tokenize
|
11 |
-
def remove_comments_and_docstrings(source,lang):
|
12 |
-
if lang in ['python']:
|
13 |
-
"""
|
14 |
-
Returns 'source' minus comments and docstrings.
|
15 |
-
"""
|
16 |
-
io_obj = StringIO(source)
|
17 |
-
out = ""
|
18 |
-
prev_toktype = tokenize.INDENT
|
19 |
-
last_lineno = -1
|
20 |
-
last_col = 0
|
21 |
-
for tok in tokenize.generate_tokens(io_obj.readline):
|
22 |
-
token_type = tok[0]
|
23 |
-
token_string = tok[1]
|
24 |
-
start_line, start_col = tok[2]
|
25 |
-
end_line, end_col = tok[3]
|
26 |
-
ltext = tok[4]
|
27 |
-
if start_line > last_lineno:
|
28 |
-
last_col = 0
|
29 |
-
if start_col > last_col:
|
30 |
-
out += (" " * (start_col - last_col))
|
31 |
-
# Remove comments:
|
32 |
-
if token_type == tokenize.COMMENT:
|
33 |
-
pass
|
34 |
-
# This series of conditionals removes docstrings:
|
35 |
-
elif token_type == tokenize.STRING:
|
36 |
-
if prev_toktype != tokenize.INDENT:
|
37 |
-
# This is likely a docstring; double-check we're not inside an operator:
|
38 |
-
if prev_toktype != tokenize.NEWLINE:
|
39 |
-
if start_col > 0:
|
40 |
-
out += token_string
|
41 |
-
else:
|
42 |
-
out += token_string
|
43 |
-
prev_toktype = token_type
|
44 |
-
last_col = end_col
|
45 |
-
last_lineno = end_line
|
46 |
-
temp=[]
|
47 |
-
for x in out.split('\n'):
|
48 |
-
if x.strip()!="":
|
49 |
-
temp.append(x)
|
50 |
-
return '\n'.join(temp)
|
51 |
-
elif lang in ['ruby']:
|
52 |
-
return source
|
53 |
-
else:
|
54 |
-
def replacer(match):
|
55 |
-
s = match.group(0)
|
56 |
-
if s.startswith('/'):
|
57 |
-
return " " # note: a space and not an empty string
|
58 |
-
else:
|
59 |
-
return s
|
60 |
-
pattern = re.compile(
|
61 |
-
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
62 |
-
re.DOTALL | re.MULTILINE
|
63 |
-
)
|
64 |
-
temp=[]
|
65 |
-
for x in re.sub(pattern, replacer, source).split('\n'):
|
66 |
-
if x.strip()!="":
|
67 |
-
temp.append(x)
|
68 |
-
return '\n'.join(temp)
|
69 |
-
|
70 |
-
def tree_to_token_index(root_node):
|
71 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
72 |
-
return [(root_node.start_point,root_node.end_point)]
|
73 |
-
else:
|
74 |
-
code_tokens=[]
|
75 |
-
for child in root_node.children:
|
76 |
-
code_tokens+=tree_to_token_index(child)
|
77 |
-
return code_tokens
|
78 |
-
|
79 |
-
def tree_to_variable_index(root_node,index_to_code):
|
80 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
81 |
-
index=(root_node.start_point,root_node.end_point)
|
82 |
-
_,code=index_to_code[index]
|
83 |
-
if root_node.type!=code:
|
84 |
-
return [(root_node.start_point,root_node.end_point)]
|
85 |
-
else:
|
86 |
-
return []
|
87 |
-
else:
|
88 |
-
code_tokens=[]
|
89 |
-
for child in root_node.children:
|
90 |
-
code_tokens+=tree_to_variable_index(child,index_to_code)
|
91 |
-
return code_tokens
|
92 |
-
|
93 |
-
def index_to_code_token(index,code):
|
94 |
-
start_point=index[0]
|
95 |
-
end_point=index[1]
|
96 |
-
if start_point[0]==end_point[0]:
|
97 |
-
s=code[start_point[0]][start_point[1]:end_point[1]]
|
98 |
-
else:
|
99 |
-
s=""
|
100 |
-
s+=code[start_point[0]][start_point[1]:]
|
101 |
-
for i in range(start_point[0]+1,end_point[0]):
|
102 |
-
s+=code[i]
|
103 |
-
s+=code[end_point[0]][:end_point[1]]
|
104 |
-
return s
|
105 |
-
|
106 |
-
|
107 |
-
def DFG_python(root_node,index_to_code,states):
|
108 |
-
assignment=['assignment','augmented_assignment','for_in_clause']
|
109 |
-
if_statement=['if_statement']
|
110 |
-
for_statement=['for_statement']
|
111 |
-
while_statement=['while_statement']
|
112 |
-
do_first_statement=['for_in_clause']
|
113 |
-
def_statement=['default_parameter']
|
114 |
-
states=states.copy()
|
115 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
116 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
117 |
-
if root_node.type==code:
|
118 |
-
return [],states
|
119 |
-
elif code in states:
|
120 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
121 |
-
else:
|
122 |
-
if root_node.type=='identifier':
|
123 |
-
states[code]=[idx]
|
124 |
-
return [(code,idx,'comesFrom',[],[])],states
|
125 |
-
elif root_node.type in def_statement:
|
126 |
-
name=root_node.child_by_field_name('name')
|
127 |
-
value=root_node.child_by_field_name('value')
|
128 |
-
DFG=[]
|
129 |
-
if value is None:
|
130 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
131 |
-
for index in indexs:
|
132 |
-
idx,code=index_to_code[index]
|
133 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
134 |
-
states[code]=[idx]
|
135 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
136 |
-
else:
|
137 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
138 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
139 |
-
temp,states=DFG_python(value,index_to_code,states)
|
140 |
-
DFG+=temp
|
141 |
-
for index1 in name_indexs:
|
142 |
-
idx1,code1=index_to_code[index1]
|
143 |
-
for index2 in value_indexs:
|
144 |
-
idx2,code2=index_to_code[index2]
|
145 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
146 |
-
states[code1]=[idx1]
|
147 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
148 |
-
elif root_node.type in assignment:
|
149 |
-
if root_node.type=='for_in_clause':
|
150 |
-
right_nodes=[root_node.children[-1]]
|
151 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
152 |
-
else:
|
153 |
-
if root_node.child_by_field_name('right') is None:
|
154 |
-
return [],states
|
155 |
-
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
156 |
-
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
157 |
-
if len(right_nodes)!=len(left_nodes):
|
158 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
159 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
160 |
-
if len(left_nodes)==0:
|
161 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
162 |
-
if len(right_nodes)==0:
|
163 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
164 |
-
DFG=[]
|
165 |
-
for node in right_nodes:
|
166 |
-
temp,states=DFG_python(node,index_to_code,states)
|
167 |
-
DFG+=temp
|
168 |
-
|
169 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
170 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
171 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
172 |
-
temp=[]
|
173 |
-
for token1_index in left_tokens_index:
|
174 |
-
idx1,code1=index_to_code[token1_index]
|
175 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
176 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
177 |
-
states[code1]=[idx1]
|
178 |
-
DFG+=temp
|
179 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
180 |
-
elif root_node.type in if_statement:
|
181 |
-
DFG=[]
|
182 |
-
current_states=states.copy()
|
183 |
-
others_states=[]
|
184 |
-
tag=False
|
185 |
-
if 'else' in root_node.type:
|
186 |
-
tag=True
|
187 |
-
for child in root_node.children:
|
188 |
-
if 'else' in child.type:
|
189 |
-
tag=True
|
190 |
-
if child.type not in ['elif_clause','else_clause']:
|
191 |
-
temp,current_states=DFG_python(child,index_to_code,current_states)
|
192 |
-
DFG+=temp
|
193 |
-
else:
|
194 |
-
temp,new_states=DFG_python(child,index_to_code,states)
|
195 |
-
DFG+=temp
|
196 |
-
others_states.append(new_states)
|
197 |
-
others_states.append(current_states)
|
198 |
-
if tag is False:
|
199 |
-
others_states.append(states)
|
200 |
-
new_states={}
|
201 |
-
for dic in others_states:
|
202 |
-
for key in dic:
|
203 |
-
if key not in new_states:
|
204 |
-
new_states[key]=dic[key].copy()
|
205 |
-
else:
|
206 |
-
new_states[key]+=dic[key]
|
207 |
-
for key in new_states:
|
208 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
209 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
210 |
-
elif root_node.type in for_statement:
|
211 |
-
DFG=[]
|
212 |
-
for i in range(2):
|
213 |
-
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
214 |
-
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
215 |
-
if len(right_nodes)!=len(left_nodes):
|
216 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
217 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
218 |
-
if len(left_nodes)==0:
|
219 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
220 |
-
if len(right_nodes)==0:
|
221 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
222 |
-
for node in right_nodes:
|
223 |
-
temp,states=DFG_python(node,index_to_code,states)
|
224 |
-
DFG+=temp
|
225 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
226 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
227 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
228 |
-
temp=[]
|
229 |
-
for token1_index in left_tokens_index:
|
230 |
-
idx1,code1=index_to_code[token1_index]
|
231 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
232 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
233 |
-
states[code1]=[idx1]
|
234 |
-
DFG+=temp
|
235 |
-
if root_node.children[-1].type=="block":
|
236 |
-
temp,states=DFG_python(root_node.children[-1],index_to_code,states)
|
237 |
-
DFG+=temp
|
238 |
-
dic={}
|
239 |
-
for x in DFG:
|
240 |
-
if (x[0],x[1],x[2]) not in dic:
|
241 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
242 |
-
else:
|
243 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
244 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
245 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
246 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
247 |
-
elif root_node.type in while_statement:
|
248 |
-
DFG=[]
|
249 |
-
for i in range(2):
|
250 |
-
for child in root_node.children:
|
251 |
-
temp,states=DFG_python(child,index_to_code,states)
|
252 |
-
DFG+=temp
|
253 |
-
dic={}
|
254 |
-
for x in DFG:
|
255 |
-
if (x[0],x[1],x[2]) not in dic:
|
256 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
257 |
-
else:
|
258 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
259 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
260 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
261 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
262 |
-
else:
|
263 |
-
DFG=[]
|
264 |
-
for child in root_node.children:
|
265 |
-
if child.type in do_first_statement:
|
266 |
-
temp,states=DFG_python(child,index_to_code,states)
|
267 |
-
DFG+=temp
|
268 |
-
for child in root_node.children:
|
269 |
-
if child.type not in do_first_statement:
|
270 |
-
temp,states=DFG_python(child,index_to_code,states)
|
271 |
-
DFG+=temp
|
272 |
-
|
273 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
274 |
-
|
275 |
-
|
276 |
-
def DFG_java(root_node,index_to_code,states):
|
277 |
-
assignment=['assignment_expression']
|
278 |
-
def_statement=['variable_declarator']
|
279 |
-
increment_statement=['update_expression']
|
280 |
-
if_statement=['if_statement','else']
|
281 |
-
for_statement=['for_statement']
|
282 |
-
enhanced_for_statement=['enhanced_for_statement']
|
283 |
-
while_statement=['while_statement']
|
284 |
-
do_first_statement=[]
|
285 |
-
states=states.copy()
|
286 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
287 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
288 |
-
if root_node.type==code:
|
289 |
-
return [],states
|
290 |
-
elif code in states:
|
291 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
292 |
-
else:
|
293 |
-
if root_node.type=='identifier':
|
294 |
-
states[code]=[idx]
|
295 |
-
return [(code,idx,'comesFrom',[],[])],states
|
296 |
-
elif root_node.type in def_statement:
|
297 |
-
name=root_node.child_by_field_name('name')
|
298 |
-
value=root_node.child_by_field_name('value')
|
299 |
-
DFG=[]
|
300 |
-
if value is None:
|
301 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
302 |
-
for index in indexs:
|
303 |
-
idx,code=index_to_code[index]
|
304 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
305 |
-
states[code]=[idx]
|
306 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
307 |
-
else:
|
308 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
309 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
310 |
-
temp,states=DFG_java(value,index_to_code,states)
|
311 |
-
DFG+=temp
|
312 |
-
for index1 in name_indexs:
|
313 |
-
idx1,code1=index_to_code[index1]
|
314 |
-
for index2 in value_indexs:
|
315 |
-
idx2,code2=index_to_code[index2]
|
316 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
317 |
-
states[code1]=[idx1]
|
318 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
319 |
-
elif root_node.type in assignment:
|
320 |
-
left_nodes=root_node.child_by_field_name('left')
|
321 |
-
right_nodes=root_node.child_by_field_name('right')
|
322 |
-
DFG=[]
|
323 |
-
temp,states=DFG_java(right_nodes,index_to_code,states)
|
324 |
-
DFG+=temp
|
325 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
326 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
327 |
-
for index1 in name_indexs:
|
328 |
-
idx1,code1=index_to_code[index1]
|
329 |
-
for index2 in value_indexs:
|
330 |
-
idx2,code2=index_to_code[index2]
|
331 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
332 |
-
states[code1]=[idx1]
|
333 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
334 |
-
elif root_node.type in increment_statement:
|
335 |
-
DFG=[]
|
336 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
337 |
-
for index1 in indexs:
|
338 |
-
idx1,code1=index_to_code[index1]
|
339 |
-
for index2 in indexs:
|
340 |
-
idx2,code2=index_to_code[index2]
|
341 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
342 |
-
states[code1]=[idx1]
|
343 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
344 |
-
elif root_node.type in if_statement:
|
345 |
-
DFG=[]
|
346 |
-
current_states=states.copy()
|
347 |
-
others_states=[]
|
348 |
-
flag=False
|
349 |
-
tag=False
|
350 |
-
if 'else' in root_node.type:
|
351 |
-
tag=True
|
352 |
-
for child in root_node.children:
|
353 |
-
if 'else' in child.type:
|
354 |
-
tag=True
|
355 |
-
if child.type not in if_statement and flag is False:
|
356 |
-
temp,current_states=DFG_java(child,index_to_code,current_states)
|
357 |
-
DFG+=temp
|
358 |
-
else:
|
359 |
-
flag=True
|
360 |
-
temp,new_states=DFG_java(child,index_to_code,states)
|
361 |
-
DFG+=temp
|
362 |
-
others_states.append(new_states)
|
363 |
-
others_states.append(current_states)
|
364 |
-
if tag is False:
|
365 |
-
others_states.append(states)
|
366 |
-
new_states={}
|
367 |
-
for dic in others_states:
|
368 |
-
for key in dic:
|
369 |
-
if key not in new_states:
|
370 |
-
new_states[key]=dic[key].copy()
|
371 |
-
else:
|
372 |
-
new_states[key]+=dic[key]
|
373 |
-
for key in new_states:
|
374 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
375 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
376 |
-
elif root_node.type in for_statement:
|
377 |
-
DFG=[]
|
378 |
-
for child in root_node.children:
|
379 |
-
temp,states=DFG_java(child,index_to_code,states)
|
380 |
-
DFG+=temp
|
381 |
-
flag=False
|
382 |
-
for child in root_node.children:
|
383 |
-
if flag:
|
384 |
-
temp,states=DFG_java(child,index_to_code,states)
|
385 |
-
DFG+=temp
|
386 |
-
elif child.type=="local_variable_declaration":
|
387 |
-
flag=True
|
388 |
-
dic={}
|
389 |
-
for x in DFG:
|
390 |
-
if (x[0],x[1],x[2]) not in dic:
|
391 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
392 |
-
else:
|
393 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
394 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
395 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
396 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
397 |
-
elif root_node.type in enhanced_for_statement:
|
398 |
-
name=root_node.child_by_field_name('name')
|
399 |
-
value=root_node.child_by_field_name('value')
|
400 |
-
body=root_node.child_by_field_name('body')
|
401 |
-
DFG=[]
|
402 |
-
for i in range(2):
|
403 |
-
temp,states=DFG_java(value,index_to_code,states)
|
404 |
-
DFG+=temp
|
405 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
406 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
407 |
-
for index1 in name_indexs:
|
408 |
-
idx1,code1=index_to_code[index1]
|
409 |
-
for index2 in value_indexs:
|
410 |
-
idx2,code2=index_to_code[index2]
|
411 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
412 |
-
states[code1]=[idx1]
|
413 |
-
temp,states=DFG_java(body,index_to_code,states)
|
414 |
-
DFG+=temp
|
415 |
-
dic={}
|
416 |
-
for x in DFG:
|
417 |
-
if (x[0],x[1],x[2]) not in dic:
|
418 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
419 |
-
else:
|
420 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
421 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
422 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
423 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
424 |
-
elif root_node.type in while_statement:
|
425 |
-
DFG=[]
|
426 |
-
for i in range(2):
|
427 |
-
for child in root_node.children:
|
428 |
-
temp,states=DFG_java(child,index_to_code,states)
|
429 |
-
DFG+=temp
|
430 |
-
dic={}
|
431 |
-
for x in DFG:
|
432 |
-
if (x[0],x[1],x[2]) not in dic:
|
433 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
434 |
-
else:
|
435 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
436 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
437 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
438 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
439 |
-
else:
|
440 |
-
DFG=[]
|
441 |
-
for child in root_node.children:
|
442 |
-
if child.type in do_first_statement:
|
443 |
-
temp,states=DFG_java(child,index_to_code,states)
|
444 |
-
DFG+=temp
|
445 |
-
for child in root_node.children:
|
446 |
-
if child.type not in do_first_statement:
|
447 |
-
temp,states=DFG_java(child,index_to_code,states)
|
448 |
-
DFG+=temp
|
449 |
-
|
450 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
451 |
-
|
452 |
-
def DFG_csharp(root_node,index_to_code,states):
|
453 |
-
assignment=['assignment_expression']
|
454 |
-
def_statement=['variable_declarator']
|
455 |
-
increment_statement=['postfix_unary_expression']
|
456 |
-
if_statement=['if_statement','else']
|
457 |
-
for_statement=['for_statement']
|
458 |
-
enhanced_for_statement=['for_each_statement']
|
459 |
-
while_statement=['while_statement']
|
460 |
-
do_first_statement=[]
|
461 |
-
states=states.copy()
|
462 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
463 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
464 |
-
if root_node.type==code:
|
465 |
-
return [],states
|
466 |
-
elif code in states:
|
467 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
468 |
-
else:
|
469 |
-
if root_node.type=='identifier':
|
470 |
-
states[code]=[idx]
|
471 |
-
return [(code,idx,'comesFrom',[],[])],states
|
472 |
-
elif root_node.type in def_statement:
|
473 |
-
if len(root_node.children)==2:
|
474 |
-
name=root_node.children[0]
|
475 |
-
value=root_node.children[1]
|
476 |
-
else:
|
477 |
-
name=root_node.children[0]
|
478 |
-
value=None
|
479 |
-
DFG=[]
|
480 |
-
if value is None:
|
481 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
482 |
-
for index in indexs:
|
483 |
-
idx,code=index_to_code[index]
|
484 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
485 |
-
states[code]=[idx]
|
486 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
487 |
-
else:
|
488 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
489 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
490 |
-
temp,states=DFG_csharp(value,index_to_code,states)
|
491 |
-
DFG+=temp
|
492 |
-
for index1 in name_indexs:
|
493 |
-
idx1,code1=index_to_code[index1]
|
494 |
-
for index2 in value_indexs:
|
495 |
-
idx2,code2=index_to_code[index2]
|
496 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
497 |
-
states[code1]=[idx1]
|
498 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
499 |
-
elif root_node.type in assignment:
|
500 |
-
left_nodes=root_node.child_by_field_name('left')
|
501 |
-
right_nodes=root_node.child_by_field_name('right')
|
502 |
-
DFG=[]
|
503 |
-
temp,states=DFG_csharp(right_nodes,index_to_code,states)
|
504 |
-
DFG+=temp
|
505 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
506 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
507 |
-
for index1 in name_indexs:
|
508 |
-
idx1,code1=index_to_code[index1]
|
509 |
-
for index2 in value_indexs:
|
510 |
-
idx2,code2=index_to_code[index2]
|
511 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
512 |
-
states[code1]=[idx1]
|
513 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
514 |
-
elif root_node.type in increment_statement:
|
515 |
-
DFG=[]
|
516 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
517 |
-
for index1 in indexs:
|
518 |
-
idx1,code1=index_to_code[index1]
|
519 |
-
for index2 in indexs:
|
520 |
-
idx2,code2=index_to_code[index2]
|
521 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
522 |
-
states[code1]=[idx1]
|
523 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
524 |
-
elif root_node.type in if_statement:
|
525 |
-
DFG=[]
|
526 |
-
current_states=states.copy()
|
527 |
-
others_states=[]
|
528 |
-
flag=False
|
529 |
-
tag=False
|
530 |
-
if 'else' in root_node.type:
|
531 |
-
tag=True
|
532 |
-
for child in root_node.children:
|
533 |
-
if 'else' in child.type:
|
534 |
-
tag=True
|
535 |
-
if child.type not in if_statement and flag is False:
|
536 |
-
temp,current_states=DFG_csharp(child,index_to_code,current_states)
|
537 |
-
DFG+=temp
|
538 |
-
else:
|
539 |
-
flag=True
|
540 |
-
temp,new_states=DFG_csharp(child,index_to_code,states)
|
541 |
-
DFG+=temp
|
542 |
-
others_states.append(new_states)
|
543 |
-
others_states.append(current_states)
|
544 |
-
if tag is False:
|
545 |
-
others_states.append(states)
|
546 |
-
new_states={}
|
547 |
-
for dic in others_states:
|
548 |
-
for key in dic:
|
549 |
-
if key not in new_states:
|
550 |
-
new_states[key]=dic[key].copy()
|
551 |
-
else:
|
552 |
-
new_states[key]+=dic[key]
|
553 |
-
for key in new_states:
|
554 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
555 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
556 |
-
elif root_node.type in for_statement:
|
557 |
-
DFG=[]
|
558 |
-
for child in root_node.children:
|
559 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
560 |
-
DFG+=temp
|
561 |
-
flag=False
|
562 |
-
for child in root_node.children:
|
563 |
-
if flag:
|
564 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
565 |
-
DFG+=temp
|
566 |
-
elif child.type=="local_variable_declaration":
|
567 |
-
flag=True
|
568 |
-
dic={}
|
569 |
-
for x in DFG:
|
570 |
-
if (x[0],x[1],x[2]) not in dic:
|
571 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
572 |
-
else:
|
573 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
574 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
575 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
576 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
577 |
-
elif root_node.type in enhanced_for_statement:
|
578 |
-
name=root_node.child_by_field_name('left')
|
579 |
-
value=root_node.child_by_field_name('right')
|
580 |
-
body=root_node.child_by_field_name('body')
|
581 |
-
DFG=[]
|
582 |
-
for i in range(2):
|
583 |
-
temp,states=DFG_csharp(value,index_to_code,states)
|
584 |
-
DFG+=temp
|
585 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
586 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
587 |
-
for index1 in name_indexs:
|
588 |
-
idx1,code1=index_to_code[index1]
|
589 |
-
for index2 in value_indexs:
|
590 |
-
idx2,code2=index_to_code[index2]
|
591 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
592 |
-
states[code1]=[idx1]
|
593 |
-
temp,states=DFG_csharp(body,index_to_code,states)
|
594 |
-
DFG+=temp
|
595 |
-
dic={}
|
596 |
-
for x in DFG:
|
597 |
-
if (x[0],x[1],x[2]) not in dic:
|
598 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
599 |
-
else:
|
600 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
601 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
602 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
603 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
604 |
-
elif root_node.type in while_statement:
|
605 |
-
DFG=[]
|
606 |
-
for i in range(2):
|
607 |
-
for child in root_node.children:
|
608 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
609 |
-
DFG+=temp
|
610 |
-
dic={}
|
611 |
-
for x in DFG:
|
612 |
-
if (x[0],x[1],x[2]) not in dic:
|
613 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
614 |
-
else:
|
615 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
616 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
617 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
618 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
619 |
-
else:
|
620 |
-
DFG=[]
|
621 |
-
for child in root_node.children:
|
622 |
-
if child.type in do_first_statement:
|
623 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
624 |
-
DFG+=temp
|
625 |
-
for child in root_node.children:
|
626 |
-
if child.type not in do_first_statement:
|
627 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
628 |
-
DFG+=temp
|
629 |
-
|
630 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
def DFG_ruby(root_node,index_to_code,states):
|
636 |
-
assignment=['assignment','operator_assignment']
|
637 |
-
if_statement=['if','elsif','else','unless','when']
|
638 |
-
for_statement=['for']
|
639 |
-
while_statement=['while_modifier','until']
|
640 |
-
do_first_statement=[]
|
641 |
-
def_statement=['keyword_parameter']
|
642 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
643 |
-
states=states.copy()
|
644 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
645 |
-
if root_node.type==code:
|
646 |
-
return [],states
|
647 |
-
elif code in states:
|
648 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
649 |
-
else:
|
650 |
-
if root_node.type=='identifier':
|
651 |
-
states[code]=[idx]
|
652 |
-
return [(code,idx,'comesFrom',[],[])],states
|
653 |
-
elif root_node.type in def_statement:
|
654 |
-
name=root_node.child_by_field_name('name')
|
655 |
-
value=root_node.child_by_field_name('value')
|
656 |
-
DFG=[]
|
657 |
-
if value is None:
|
658 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
659 |
-
for index in indexs:
|
660 |
-
idx,code=index_to_code[index]
|
661 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
662 |
-
states[code]=[idx]
|
663 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
664 |
-
else:
|
665 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
666 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
667 |
-
temp,states=DFG_ruby(value,index_to_code,states)
|
668 |
-
DFG+=temp
|
669 |
-
for index1 in name_indexs:
|
670 |
-
idx1,code1=index_to_code[index1]
|
671 |
-
for index2 in value_indexs:
|
672 |
-
idx2,code2=index_to_code[index2]
|
673 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
674 |
-
states[code1]=[idx1]
|
675 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
676 |
-
elif root_node.type in assignment:
|
677 |
-
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
678 |
-
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
679 |
-
if len(right_nodes)!=len(left_nodes):
|
680 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
681 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
682 |
-
if len(left_nodes)==0:
|
683 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
684 |
-
if len(right_nodes)==0:
|
685 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
686 |
-
if root_node.type=="operator_assignment":
|
687 |
-
left_nodes=[root_node.children[0]]
|
688 |
-
right_nodes=[root_node.children[-1]]
|
689 |
-
|
690 |
-
DFG=[]
|
691 |
-
for node in right_nodes:
|
692 |
-
temp,states=DFG_ruby(node,index_to_code,states)
|
693 |
-
DFG+=temp
|
694 |
-
|
695 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
696 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
697 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
698 |
-
temp=[]
|
699 |
-
for token1_index in left_tokens_index:
|
700 |
-
idx1,code1=index_to_code[token1_index]
|
701 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
702 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
703 |
-
states[code1]=[idx1]
|
704 |
-
DFG+=temp
|
705 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
706 |
-
elif root_node.type in if_statement:
|
707 |
-
DFG=[]
|
708 |
-
current_states=states.copy()
|
709 |
-
others_states=[]
|
710 |
-
tag=False
|
711 |
-
if 'else' in root_node.type:
|
712 |
-
tag=True
|
713 |
-
for child in root_node.children:
|
714 |
-
if 'else' in child.type:
|
715 |
-
tag=True
|
716 |
-
if child.type not in if_statement:
|
717 |
-
temp,current_states=DFG_ruby(child,index_to_code,current_states)
|
718 |
-
DFG+=temp
|
719 |
-
else:
|
720 |
-
temp,new_states=DFG_ruby(child,index_to_code,states)
|
721 |
-
DFG+=temp
|
722 |
-
others_states.append(new_states)
|
723 |
-
others_states.append(current_states)
|
724 |
-
if tag is False:
|
725 |
-
others_states.append(states)
|
726 |
-
new_states={}
|
727 |
-
for dic in others_states:
|
728 |
-
for key in dic:
|
729 |
-
if key not in new_states:
|
730 |
-
new_states[key]=dic[key].copy()
|
731 |
-
else:
|
732 |
-
new_states[key]+=dic[key]
|
733 |
-
for key in new_states:
|
734 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
735 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
736 |
-
elif root_node.type in for_statement:
|
737 |
-
DFG=[]
|
738 |
-
for i in range(2):
|
739 |
-
left_nodes=[root_node.child_by_field_name('pattern')]
|
740 |
-
right_nodes=[root_node.child_by_field_name('value')]
|
741 |
-
assert len(right_nodes)==len(left_nodes)
|
742 |
-
for node in right_nodes:
|
743 |
-
temp,states=DFG_ruby(node,index_to_code,states)
|
744 |
-
DFG+=temp
|
745 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
746 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
747 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
748 |
-
temp=[]
|
749 |
-
for token1_index in left_tokens_index:
|
750 |
-
idx1,code1=index_to_code[token1_index]
|
751 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
752 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
753 |
-
states[code1]=[idx1]
|
754 |
-
DFG+=temp
|
755 |
-
temp,states=DFG_ruby(root_node.child_by_field_name('body'),index_to_code,states)
|
756 |
-
DFG+=temp
|
757 |
-
dic={}
|
758 |
-
for x in DFG:
|
759 |
-
if (x[0],x[1],x[2]) not in dic:
|
760 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
761 |
-
else:
|
762 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
763 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
764 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
765 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
766 |
-
elif root_node.type in while_statement:
|
767 |
-
DFG=[]
|
768 |
-
for i in range(2):
|
769 |
-
for child in root_node.children:
|
770 |
-
temp,states=DFG_ruby(child,index_to_code,states)
|
771 |
-
DFG+=temp
|
772 |
-
dic={}
|
773 |
-
for x in DFG:
|
774 |
-
if (x[0],x[1],x[2]) not in dic:
|
775 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
776 |
-
else:
|
777 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
778 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
779 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
780 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
781 |
-
else:
|
782 |
-
DFG=[]
|
783 |
-
for child in root_node.children:
|
784 |
-
if child.type in do_first_statement:
|
785 |
-
temp,states=DFG_ruby(child,index_to_code,states)
|
786 |
-
DFG+=temp
|
787 |
-
for child in root_node.children:
|
788 |
-
if child.type not in do_first_statement:
|
789 |
-
temp,states=DFG_ruby(child,index_to_code,states)
|
790 |
-
DFG+=temp
|
791 |
-
|
792 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
793 |
-
|
794 |
-
def DFG_go(root_node,index_to_code,states):
|
795 |
-
assignment=['assignment_statement',]
|
796 |
-
def_statement=['var_spec']
|
797 |
-
increment_statement=['inc_statement']
|
798 |
-
if_statement=['if_statement','else']
|
799 |
-
for_statement=['for_statement']
|
800 |
-
enhanced_for_statement=[]
|
801 |
-
while_statement=[]
|
802 |
-
do_first_statement=[]
|
803 |
-
states=states.copy()
|
804 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
805 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
806 |
-
if root_node.type==code:
|
807 |
-
return [],states
|
808 |
-
elif code in states:
|
809 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
810 |
-
else:
|
811 |
-
if root_node.type=='identifier':
|
812 |
-
states[code]=[idx]
|
813 |
-
return [(code,idx,'comesFrom',[],[])],states
|
814 |
-
elif root_node.type in def_statement:
|
815 |
-
name=root_node.child_by_field_name('name')
|
816 |
-
value=root_node.child_by_field_name('value')
|
817 |
-
DFG=[]
|
818 |
-
if value is None:
|
819 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
820 |
-
for index in indexs:
|
821 |
-
idx,code=index_to_code[index]
|
822 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
823 |
-
states[code]=[idx]
|
824 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
825 |
-
else:
|
826 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
827 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
828 |
-
temp,states=DFG_go(value,index_to_code,states)
|
829 |
-
DFG+=temp
|
830 |
-
for index1 in name_indexs:
|
831 |
-
idx1,code1=index_to_code[index1]
|
832 |
-
for index2 in value_indexs:
|
833 |
-
idx2,code2=index_to_code[index2]
|
834 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
835 |
-
states[code1]=[idx1]
|
836 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
837 |
-
elif root_node.type in assignment:
|
838 |
-
left_nodes=root_node.child_by_field_name('left')
|
839 |
-
right_nodes=root_node.child_by_field_name('right')
|
840 |
-
DFG=[]
|
841 |
-
temp,states=DFG_go(right_nodes,index_to_code,states)
|
842 |
-
DFG+=temp
|
843 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
844 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
845 |
-
for index1 in name_indexs:
|
846 |
-
idx1,code1=index_to_code[index1]
|
847 |
-
for index2 in value_indexs:
|
848 |
-
idx2,code2=index_to_code[index2]
|
849 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
850 |
-
states[code1]=[idx1]
|
851 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
852 |
-
elif root_node.type in increment_statement:
|
853 |
-
DFG=[]
|
854 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
855 |
-
for index1 in indexs:
|
856 |
-
idx1,code1=index_to_code[index1]
|
857 |
-
for index2 in indexs:
|
858 |
-
idx2,code2=index_to_code[index2]
|
859 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
860 |
-
states[code1]=[idx1]
|
861 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
862 |
-
elif root_node.type in if_statement:
|
863 |
-
DFG=[]
|
864 |
-
current_states=states.copy()
|
865 |
-
others_states=[]
|
866 |
-
flag=False
|
867 |
-
tag=False
|
868 |
-
if 'else' in root_node.type:
|
869 |
-
tag=True
|
870 |
-
for child in root_node.children:
|
871 |
-
if 'else' in child.type:
|
872 |
-
tag=True
|
873 |
-
if child.type not in if_statement and flag is False:
|
874 |
-
temp,current_states=DFG_go(child,index_to_code,current_states)
|
875 |
-
DFG+=temp
|
876 |
-
else:
|
877 |
-
flag=True
|
878 |
-
temp,new_states=DFG_go(child,index_to_code,states)
|
879 |
-
DFG+=temp
|
880 |
-
others_states.append(new_states)
|
881 |
-
others_states.append(current_states)
|
882 |
-
if tag is False:
|
883 |
-
others_states.append(states)
|
884 |
-
new_states={}
|
885 |
-
for dic in others_states:
|
886 |
-
for key in dic:
|
887 |
-
if key not in new_states:
|
888 |
-
new_states[key]=dic[key].copy()
|
889 |
-
else:
|
890 |
-
new_states[key]+=dic[key]
|
891 |
-
for key in states:
|
892 |
-
if key not in new_states:
|
893 |
-
new_states[key]=states[key]
|
894 |
-
else:
|
895 |
-
new_states[key]+=states[key]
|
896 |
-
for key in new_states:
|
897 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
898 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
899 |
-
elif root_node.type in for_statement:
|
900 |
-
DFG=[]
|
901 |
-
for child in root_node.children:
|
902 |
-
temp,states=DFG_go(child,index_to_code,states)
|
903 |
-
DFG+=temp
|
904 |
-
flag=False
|
905 |
-
for child in root_node.children:
|
906 |
-
if flag:
|
907 |
-
temp,states=DFG_go(child,index_to_code,states)
|
908 |
-
DFG+=temp
|
909 |
-
elif child.type=="for_clause":
|
910 |
-
if child.child_by_field_name('update') is not None:
|
911 |
-
temp,states=DFG_go(child.child_by_field_name('update'),index_to_code,states)
|
912 |
-
DFG+=temp
|
913 |
-
flag=True
|
914 |
-
dic={}
|
915 |
-
for x in DFG:
|
916 |
-
if (x[0],x[1],x[2]) not in dic:
|
917 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
918 |
-
else:
|
919 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
920 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
921 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
922 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
923 |
-
else:
|
924 |
-
DFG=[]
|
925 |
-
for child in root_node.children:
|
926 |
-
if child.type in do_first_statement:
|
927 |
-
temp,states=DFG_go(child,index_to_code,states)
|
928 |
-
DFG+=temp
|
929 |
-
for child in root_node.children:
|
930 |
-
if child.type not in do_first_statement:
|
931 |
-
temp,states=DFG_go(child,index_to_code,states)
|
932 |
-
DFG+=temp
|
933 |
-
|
934 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
def DFG_php(root_node,index_to_code,states):
|
940 |
-
assignment=['assignment_expression','augmented_assignment_expression']
|
941 |
-
def_statement=['simple_parameter']
|
942 |
-
increment_statement=['update_expression']
|
943 |
-
if_statement=['if_statement','else_clause']
|
944 |
-
for_statement=['for_statement']
|
945 |
-
enhanced_for_statement=['foreach_statement']
|
946 |
-
while_statement=['while_statement']
|
947 |
-
do_first_statement=[]
|
948 |
-
states=states.copy()
|
949 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
950 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
951 |
-
if root_node.type==code:
|
952 |
-
return [],states
|
953 |
-
elif code in states:
|
954 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
955 |
-
else:
|
956 |
-
if root_node.type=='identifier':
|
957 |
-
states[code]=[idx]
|
958 |
-
return [(code,idx,'comesFrom',[],[])],states
|
959 |
-
elif root_node.type in def_statement:
|
960 |
-
name=root_node.child_by_field_name('name')
|
961 |
-
value=root_node.child_by_field_name('default_value')
|
962 |
-
DFG=[]
|
963 |
-
if value is None:
|
964 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
965 |
-
for index in indexs:
|
966 |
-
idx,code=index_to_code[index]
|
967 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
968 |
-
states[code]=[idx]
|
969 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
970 |
-
else:
|
971 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
972 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
973 |
-
temp,states=DFG_php(value,index_to_code,states)
|
974 |
-
DFG+=temp
|
975 |
-
for index1 in name_indexs:
|
976 |
-
idx1,code1=index_to_code[index1]
|
977 |
-
for index2 in value_indexs:
|
978 |
-
idx2,code2=index_to_code[index2]
|
979 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
980 |
-
states[code1]=[idx1]
|
981 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
982 |
-
elif root_node.type in assignment:
|
983 |
-
left_nodes=root_node.child_by_field_name('left')
|
984 |
-
right_nodes=root_node.child_by_field_name('right')
|
985 |
-
DFG=[]
|
986 |
-
temp,states=DFG_php(right_nodes,index_to_code,states)
|
987 |
-
DFG+=temp
|
988 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
989 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
990 |
-
for index1 in name_indexs:
|
991 |
-
idx1,code1=index_to_code[index1]
|
992 |
-
for index2 in value_indexs:
|
993 |
-
idx2,code2=index_to_code[index2]
|
994 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
995 |
-
states[code1]=[idx1]
|
996 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
997 |
-
elif root_node.type in increment_statement:
|
998 |
-
DFG=[]
|
999 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
1000 |
-
for index1 in indexs:
|
1001 |
-
idx1,code1=index_to_code[index1]
|
1002 |
-
for index2 in indexs:
|
1003 |
-
idx2,code2=index_to_code[index2]
|
1004 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1005 |
-
states[code1]=[idx1]
|
1006 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1007 |
-
elif root_node.type in if_statement:
|
1008 |
-
DFG=[]
|
1009 |
-
current_states=states.copy()
|
1010 |
-
others_states=[]
|
1011 |
-
flag=False
|
1012 |
-
tag=False
|
1013 |
-
if 'else' in root_node.type:
|
1014 |
-
tag=True
|
1015 |
-
for child in root_node.children:
|
1016 |
-
if 'else' in child.type:
|
1017 |
-
tag=True
|
1018 |
-
if child.type not in if_statement and flag is False:
|
1019 |
-
temp,current_states=DFG_php(child,index_to_code,current_states)
|
1020 |
-
DFG+=temp
|
1021 |
-
else:
|
1022 |
-
flag=True
|
1023 |
-
temp,new_states=DFG_php(child,index_to_code,states)
|
1024 |
-
DFG+=temp
|
1025 |
-
others_states.append(new_states)
|
1026 |
-
others_states.append(current_states)
|
1027 |
-
new_states={}
|
1028 |
-
for dic in others_states:
|
1029 |
-
for key in dic:
|
1030 |
-
if key not in new_states:
|
1031 |
-
new_states[key]=dic[key].copy()
|
1032 |
-
else:
|
1033 |
-
new_states[key]+=dic[key]
|
1034 |
-
for key in states:
|
1035 |
-
if key not in new_states:
|
1036 |
-
new_states[key]=states[key]
|
1037 |
-
else:
|
1038 |
-
new_states[key]+=states[key]
|
1039 |
-
for key in new_states:
|
1040 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
1041 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
1042 |
-
elif root_node.type in for_statement:
|
1043 |
-
DFG=[]
|
1044 |
-
for child in root_node.children:
|
1045 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1046 |
-
DFG+=temp
|
1047 |
-
flag=False
|
1048 |
-
for child in root_node.children:
|
1049 |
-
if flag:
|
1050 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1051 |
-
DFG+=temp
|
1052 |
-
elif child.type=="assignment_expression":
|
1053 |
-
flag=True
|
1054 |
-
dic={}
|
1055 |
-
for x in DFG:
|
1056 |
-
if (x[0],x[1],x[2]) not in dic:
|
1057 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1058 |
-
else:
|
1059 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1060 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1061 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1062 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1063 |
-
elif root_node.type in enhanced_for_statement:
|
1064 |
-
name=None
|
1065 |
-
value=None
|
1066 |
-
for child in root_node.children:
|
1067 |
-
if child.type=='variable_name' and value is None:
|
1068 |
-
value=child
|
1069 |
-
elif child.type=='variable_name' and name is None:
|
1070 |
-
name=child
|
1071 |
-
break
|
1072 |
-
body=root_node.child_by_field_name('body')
|
1073 |
-
DFG=[]
|
1074 |
-
for i in range(2):
|
1075 |
-
temp,states=DFG_php(value,index_to_code,states)
|
1076 |
-
DFG+=temp
|
1077 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
1078 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
1079 |
-
for index1 in name_indexs:
|
1080 |
-
idx1,code1=index_to_code[index1]
|
1081 |
-
for index2 in value_indexs:
|
1082 |
-
idx2,code2=index_to_code[index2]
|
1083 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1084 |
-
states[code1]=[idx1]
|
1085 |
-
temp,states=DFG_php(body,index_to_code,states)
|
1086 |
-
DFG+=temp
|
1087 |
-
dic={}
|
1088 |
-
for x in DFG:
|
1089 |
-
if (x[0],x[1],x[2]) not in dic:
|
1090 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1091 |
-
else:
|
1092 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1093 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1094 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1095 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1096 |
-
elif root_node.type in while_statement:
|
1097 |
-
DFG=[]
|
1098 |
-
for i in range(2):
|
1099 |
-
for child in root_node.children:
|
1100 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1101 |
-
DFG+=temp
|
1102 |
-
dic={}
|
1103 |
-
for x in DFG:
|
1104 |
-
if (x[0],x[1],x[2]) not in dic:
|
1105 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1106 |
-
else:
|
1107 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1108 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1109 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1110 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1111 |
-
else:
|
1112 |
-
DFG=[]
|
1113 |
-
for child in root_node.children:
|
1114 |
-
if child.type in do_first_statement:
|
1115 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1116 |
-
DFG+=temp
|
1117 |
-
for child in root_node.children:
|
1118 |
-
if child.type not in do_first_statement:
|
1119 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1120 |
-
DFG+=temp
|
1121 |
-
|
1122 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1123 |
-
|
1124 |
-
|
1125 |
-
def DFG_javascript(root_node,index_to_code,states):
|
1126 |
-
assignment=['assignment_pattern','augmented_assignment_expression']
|
1127 |
-
def_statement=['variable_declarator']
|
1128 |
-
increment_statement=['update_expression']
|
1129 |
-
if_statement=['if_statement','else']
|
1130 |
-
for_statement=['for_statement']
|
1131 |
-
enhanced_for_statement=[]
|
1132 |
-
while_statement=['while_statement']
|
1133 |
-
do_first_statement=[]
|
1134 |
-
states=states.copy()
|
1135 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
1136 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
1137 |
-
if root_node.type==code:
|
1138 |
-
return [],states
|
1139 |
-
elif code in states:
|
1140 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
1141 |
-
else:
|
1142 |
-
if root_node.type=='identifier':
|
1143 |
-
states[code]=[idx]
|
1144 |
-
return [(code,idx,'comesFrom',[],[])],states
|
1145 |
-
elif root_node.type in def_statement:
|
1146 |
-
name=root_node.child_by_field_name('name')
|
1147 |
-
value=root_node.child_by_field_name('value')
|
1148 |
-
DFG=[]
|
1149 |
-
if value is None:
|
1150 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
1151 |
-
for index in indexs:
|
1152 |
-
idx,code=index_to_code[index]
|
1153 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
1154 |
-
states[code]=[idx]
|
1155 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1156 |
-
else:
|
1157 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
1158 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
1159 |
-
temp,states=DFG_javascript(value,index_to_code,states)
|
1160 |
-
DFG+=temp
|
1161 |
-
for index1 in name_indexs:
|
1162 |
-
idx1,code1=index_to_code[index1]
|
1163 |
-
for index2 in value_indexs:
|
1164 |
-
idx2,code2=index_to_code[index2]
|
1165 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
1166 |
-
states[code1]=[idx1]
|
1167 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1168 |
-
elif root_node.type in assignment:
|
1169 |
-
left_nodes=root_node.child_by_field_name('left')
|
1170 |
-
right_nodes=root_node.child_by_field_name('right')
|
1171 |
-
DFG=[]
|
1172 |
-
temp,states=DFG_javascript(right_nodes,index_to_code,states)
|
1173 |
-
DFG+=temp
|
1174 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
1175 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
1176 |
-
for index1 in name_indexs:
|
1177 |
-
idx1,code1=index_to_code[index1]
|
1178 |
-
for index2 in value_indexs:
|
1179 |
-
idx2,code2=index_to_code[index2]
|
1180 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1181 |
-
states[code1]=[idx1]
|
1182 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1183 |
-
elif root_node.type in increment_statement:
|
1184 |
-
DFG=[]
|
1185 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
1186 |
-
for index1 in indexs:
|
1187 |
-
idx1,code1=index_to_code[index1]
|
1188 |
-
for index2 in indexs:
|
1189 |
-
idx2,code2=index_to_code[index2]
|
1190 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1191 |
-
states[code1]=[idx1]
|
1192 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1193 |
-
elif root_node.type in if_statement:
|
1194 |
-
DFG=[]
|
1195 |
-
current_states=states.copy()
|
1196 |
-
others_states=[]
|
1197 |
-
flag=False
|
1198 |
-
tag=False
|
1199 |
-
if 'else' in root_node.type:
|
1200 |
-
tag=True
|
1201 |
-
for child in root_node.children:
|
1202 |
-
if 'else' in child.type:
|
1203 |
-
tag=True
|
1204 |
-
if child.type not in if_statement and flag is False:
|
1205 |
-
temp,current_states=DFG_javascript(child,index_to_code,current_states)
|
1206 |
-
DFG+=temp
|
1207 |
-
else:
|
1208 |
-
flag=True
|
1209 |
-
temp,new_states=DFG_javascript(child,index_to_code,states)
|
1210 |
-
DFG+=temp
|
1211 |
-
others_states.append(new_states)
|
1212 |
-
others_states.append(current_states)
|
1213 |
-
if tag is False:
|
1214 |
-
others_states.append(states)
|
1215 |
-
new_states={}
|
1216 |
-
for dic in others_states:
|
1217 |
-
for key in dic:
|
1218 |
-
if key not in new_states:
|
1219 |
-
new_states[key]=dic[key].copy()
|
1220 |
-
else:
|
1221 |
-
new_states[key]+=dic[key]
|
1222 |
-
for key in states:
|
1223 |
-
if key not in new_states:
|
1224 |
-
new_states[key]=states[key]
|
1225 |
-
else:
|
1226 |
-
new_states[key]+=states[key]
|
1227 |
-
for key in new_states:
|
1228 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
1229 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
1230 |
-
elif root_node.type in for_statement:
|
1231 |
-
DFG=[]
|
1232 |
-
for child in root_node.children:
|
1233 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1234 |
-
DFG+=temp
|
1235 |
-
flag=False
|
1236 |
-
for child in root_node.children:
|
1237 |
-
if flag:
|
1238 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1239 |
-
DFG+=temp
|
1240 |
-
elif child.type=="variable_declaration":
|
1241 |
-
flag=True
|
1242 |
-
dic={}
|
1243 |
-
for x in DFG:
|
1244 |
-
if (x[0],x[1],x[2]) not in dic:
|
1245 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1246 |
-
else:
|
1247 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1248 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1249 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1250 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1251 |
-
elif root_node.type in while_statement:
|
1252 |
-
DFG=[]
|
1253 |
-
for i in range(2):
|
1254 |
-
for child in root_node.children:
|
1255 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1256 |
-
DFG+=temp
|
1257 |
-
dic={}
|
1258 |
-
for x in DFG:
|
1259 |
-
if (x[0],x[1],x[2]) not in dic:
|
1260 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1261 |
-
else:
|
1262 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1263 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1264 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1265 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1266 |
-
else:
|
1267 |
-
DFG=[]
|
1268 |
-
for child in root_node.children:
|
1269 |
-
if child.type in do_first_statement:
|
1270 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1271 |
-
DFG+=temp
|
1272 |
-
for child in root_node.children:
|
1273 |
-
if child.type not in do_first_statement:
|
1274 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1275 |
-
DFG+=temp
|
1276 |
-
|
1277 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1278 |
|
1279 |
dfg_function={
|
1280 |
'python':DFG_python,
|
@@ -1291,8 +25,9 @@ dfg_function={
|
|
1291 |
def calc_dataflow_match(references, candidate, lang):
|
1292 |
return corpus_dataflow_match([references], [candidate], lang)
|
1293 |
|
1294 |
-
def corpus_dataflow_match(references, candidates, lang):
|
1295 |
-
|
|
|
1296 |
parser = Parser()
|
1297 |
parser.set_language(LANGUAGE)
|
1298 |
parser = [parser,dfg_function[lang]]
|
|
|
1 |
# Copyright (c) Microsoft Corporation.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
+
from .parsercode.DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
5 |
+
from .parsercode.utils import (remove_comments_and_docstrings,
|
6 |
+
tree_to_token_index,
|
7 |
+
index_to_code_token,
|
8 |
+
tree_to_variable_index)
|
9 |
from tree_sitter import Language, Parser
|
10 |
import pdb
|
11 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
dfg_function={
|
14 |
'python':DFG_python,
|
|
|
25 |
def calc_dataflow_match(references, candidate, lang):
|
26 |
return corpus_dataflow_match([references], [candidate], lang)
|
27 |
|
28 |
+
def corpus_dataflow_match(references, candidates, lang):
|
29 |
+
curr_path = os.path.dirname(os.path.abspath(__file__))
|
30 |
+
LANGUAGE = Language(curr_path + '/parsercode/my-languages.so', lang)
|
31 |
parser = Parser()
|
32 |
parser.set_language(LANGUAGE)
|
33 |
parser = [parser,dfg_function[lang]]
|
readme.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python calc_code_bleu.py --refs reference_files --hyp candidate_file --language java ( or c_sharp) --params 0.25,0.25,0.25,0.25(default)
|
syntax_match.py
CHANGED
@@ -1,1279 +1,13 @@
|
|
1 |
# Copyright (c) Microsoft Corporation.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
from tree_sitter import Language, Parser
|
6 |
-
|
7 |
-
import re
|
8 |
-
from io import StringIO
|
9 |
-
import tokenize
|
10 |
-
def remove_comments_and_docstrings(source,lang):
|
11 |
-
if lang in ['python']:
|
12 |
-
"""
|
13 |
-
Returns 'source' minus comments and docstrings.
|
14 |
-
"""
|
15 |
-
io_obj = StringIO(source)
|
16 |
-
out = ""
|
17 |
-
prev_toktype = tokenize.INDENT
|
18 |
-
last_lineno = -1
|
19 |
-
last_col = 0
|
20 |
-
for tok in tokenize.generate_tokens(io_obj.readline):
|
21 |
-
token_type = tok[0]
|
22 |
-
token_string = tok[1]
|
23 |
-
start_line, start_col = tok[2]
|
24 |
-
end_line, end_col = tok[3]
|
25 |
-
ltext = tok[4]
|
26 |
-
if start_line > last_lineno:
|
27 |
-
last_col = 0
|
28 |
-
if start_col > last_col:
|
29 |
-
out += (" " * (start_col - last_col))
|
30 |
-
# Remove comments:
|
31 |
-
if token_type == tokenize.COMMENT:
|
32 |
-
pass
|
33 |
-
# This series of conditionals removes docstrings:
|
34 |
-
elif token_type == tokenize.STRING:
|
35 |
-
if prev_toktype != tokenize.INDENT:
|
36 |
-
# This is likely a docstring; double-check we're not inside an operator:
|
37 |
-
if prev_toktype != tokenize.NEWLINE:
|
38 |
-
if start_col > 0:
|
39 |
-
out += token_string
|
40 |
-
else:
|
41 |
-
out += token_string
|
42 |
-
prev_toktype = token_type
|
43 |
-
last_col = end_col
|
44 |
-
last_lineno = end_line
|
45 |
-
temp=[]
|
46 |
-
for x in out.split('\n'):
|
47 |
-
if x.strip()!="":
|
48 |
-
temp.append(x)
|
49 |
-
return '\n'.join(temp)
|
50 |
-
elif lang in ['ruby']:
|
51 |
-
return source
|
52 |
-
else:
|
53 |
-
def replacer(match):
|
54 |
-
s = match.group(0)
|
55 |
-
if s.startswith('/'):
|
56 |
-
return " " # note: a space and not an empty string
|
57 |
-
else:
|
58 |
-
return s
|
59 |
-
pattern = re.compile(
|
60 |
-
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
61 |
-
re.DOTALL | re.MULTILINE
|
62 |
-
)
|
63 |
-
temp=[]
|
64 |
-
for x in re.sub(pattern, replacer, source).split('\n'):
|
65 |
-
if x.strip()!="":
|
66 |
-
temp.append(x)
|
67 |
-
return '\n'.join(temp)
|
68 |
-
|
69 |
-
def tree_to_token_index(root_node):
|
70 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
71 |
-
return [(root_node.start_point,root_node.end_point)]
|
72 |
-
else:
|
73 |
-
code_tokens=[]
|
74 |
-
for child in root_node.children:
|
75 |
-
code_tokens+=tree_to_token_index(child)
|
76 |
-
return code_tokens
|
77 |
-
|
78 |
-
def tree_to_variable_index(root_node,index_to_code):
|
79 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
80 |
-
index=(root_node.start_point,root_node.end_point)
|
81 |
-
_,code=index_to_code[index]
|
82 |
-
if root_node.type!=code:
|
83 |
-
return [(root_node.start_point,root_node.end_point)]
|
84 |
-
else:
|
85 |
-
return []
|
86 |
-
else:
|
87 |
-
code_tokens=[]
|
88 |
-
for child in root_node.children:
|
89 |
-
code_tokens+=tree_to_variable_index(child,index_to_code)
|
90 |
-
return code_tokens
|
91 |
-
|
92 |
-
def index_to_code_token(index,code):
|
93 |
-
start_point=index[0]
|
94 |
-
end_point=index[1]
|
95 |
-
if start_point[0]==end_point[0]:
|
96 |
-
s=code[start_point[0]][start_point[1]:end_point[1]]
|
97 |
-
else:
|
98 |
-
s=""
|
99 |
-
s+=code[start_point[0]][start_point[1]:]
|
100 |
-
for i in range(start_point[0]+1,end_point[0]):
|
101 |
-
s+=code[i]
|
102 |
-
s+=code[end_point[0]][:end_point[1]]
|
103 |
-
return s
|
104 |
-
|
105 |
-
|
106 |
-
def DFG_python(root_node,index_to_code,states):
|
107 |
-
assignment=['assignment','augmented_assignment','for_in_clause']
|
108 |
-
if_statement=['if_statement']
|
109 |
-
for_statement=['for_statement']
|
110 |
-
while_statement=['while_statement']
|
111 |
-
do_first_statement=['for_in_clause']
|
112 |
-
def_statement=['default_parameter']
|
113 |
-
states=states.copy()
|
114 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
115 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
116 |
-
if root_node.type==code:
|
117 |
-
return [],states
|
118 |
-
elif code in states:
|
119 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
120 |
-
else:
|
121 |
-
if root_node.type=='identifier':
|
122 |
-
states[code]=[idx]
|
123 |
-
return [(code,idx,'comesFrom',[],[])],states
|
124 |
-
elif root_node.type in def_statement:
|
125 |
-
name=root_node.child_by_field_name('name')
|
126 |
-
value=root_node.child_by_field_name('value')
|
127 |
-
DFG=[]
|
128 |
-
if value is None:
|
129 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
130 |
-
for index in indexs:
|
131 |
-
idx,code=index_to_code[index]
|
132 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
133 |
-
states[code]=[idx]
|
134 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
135 |
-
else:
|
136 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
137 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
138 |
-
temp,states=DFG_python(value,index_to_code,states)
|
139 |
-
DFG+=temp
|
140 |
-
for index1 in name_indexs:
|
141 |
-
idx1,code1=index_to_code[index1]
|
142 |
-
for index2 in value_indexs:
|
143 |
-
idx2,code2=index_to_code[index2]
|
144 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
145 |
-
states[code1]=[idx1]
|
146 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
147 |
-
elif root_node.type in assignment:
|
148 |
-
if root_node.type=='for_in_clause':
|
149 |
-
right_nodes=[root_node.children[-1]]
|
150 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
151 |
-
else:
|
152 |
-
if root_node.child_by_field_name('right') is None:
|
153 |
-
return [],states
|
154 |
-
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
155 |
-
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
156 |
-
if len(right_nodes)!=len(left_nodes):
|
157 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
158 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
159 |
-
if len(left_nodes)==0:
|
160 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
161 |
-
if len(right_nodes)==0:
|
162 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
163 |
-
DFG=[]
|
164 |
-
for node in right_nodes:
|
165 |
-
temp,states=DFG_python(node,index_to_code,states)
|
166 |
-
DFG+=temp
|
167 |
-
|
168 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
169 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
170 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
171 |
-
temp=[]
|
172 |
-
for token1_index in left_tokens_index:
|
173 |
-
idx1,code1=index_to_code[token1_index]
|
174 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
175 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
176 |
-
states[code1]=[idx1]
|
177 |
-
DFG+=temp
|
178 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
179 |
-
elif root_node.type in if_statement:
|
180 |
-
DFG=[]
|
181 |
-
current_states=states.copy()
|
182 |
-
others_states=[]
|
183 |
-
tag=False
|
184 |
-
if 'else' in root_node.type:
|
185 |
-
tag=True
|
186 |
-
for child in root_node.children:
|
187 |
-
if 'else' in child.type:
|
188 |
-
tag=True
|
189 |
-
if child.type not in ['elif_clause','else_clause']:
|
190 |
-
temp,current_states=DFG_python(child,index_to_code,current_states)
|
191 |
-
DFG+=temp
|
192 |
-
else:
|
193 |
-
temp,new_states=DFG_python(child,index_to_code,states)
|
194 |
-
DFG+=temp
|
195 |
-
others_states.append(new_states)
|
196 |
-
others_states.append(current_states)
|
197 |
-
if tag is False:
|
198 |
-
others_states.append(states)
|
199 |
-
new_states={}
|
200 |
-
for dic in others_states:
|
201 |
-
for key in dic:
|
202 |
-
if key not in new_states:
|
203 |
-
new_states[key]=dic[key].copy()
|
204 |
-
else:
|
205 |
-
new_states[key]+=dic[key]
|
206 |
-
for key in new_states:
|
207 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
208 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
209 |
-
elif root_node.type in for_statement:
|
210 |
-
DFG=[]
|
211 |
-
for i in range(2):
|
212 |
-
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
213 |
-
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
214 |
-
if len(right_nodes)!=len(left_nodes):
|
215 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
216 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
217 |
-
if len(left_nodes)==0:
|
218 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
219 |
-
if len(right_nodes)==0:
|
220 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
221 |
-
for node in right_nodes:
|
222 |
-
temp,states=DFG_python(node,index_to_code,states)
|
223 |
-
DFG+=temp
|
224 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
225 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
226 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
227 |
-
temp=[]
|
228 |
-
for token1_index in left_tokens_index:
|
229 |
-
idx1,code1=index_to_code[token1_index]
|
230 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
231 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
232 |
-
states[code1]=[idx1]
|
233 |
-
DFG+=temp
|
234 |
-
if root_node.children[-1].type=="block":
|
235 |
-
temp,states=DFG_python(root_node.children[-1],index_to_code,states)
|
236 |
-
DFG+=temp
|
237 |
-
dic={}
|
238 |
-
for x in DFG:
|
239 |
-
if (x[0],x[1],x[2]) not in dic:
|
240 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
241 |
-
else:
|
242 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
243 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
244 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
245 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
246 |
-
elif root_node.type in while_statement:
|
247 |
-
DFG=[]
|
248 |
-
for i in range(2):
|
249 |
-
for child in root_node.children:
|
250 |
-
temp,states=DFG_python(child,index_to_code,states)
|
251 |
-
DFG+=temp
|
252 |
-
dic={}
|
253 |
-
for x in DFG:
|
254 |
-
if (x[0],x[1],x[2]) not in dic:
|
255 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
256 |
-
else:
|
257 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
258 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
259 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
260 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
261 |
-
else:
|
262 |
-
DFG=[]
|
263 |
-
for child in root_node.children:
|
264 |
-
if child.type in do_first_statement:
|
265 |
-
temp,states=DFG_python(child,index_to_code,states)
|
266 |
-
DFG+=temp
|
267 |
-
for child in root_node.children:
|
268 |
-
if child.type not in do_first_statement:
|
269 |
-
temp,states=DFG_python(child,index_to_code,states)
|
270 |
-
DFG+=temp
|
271 |
-
|
272 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
273 |
-
|
274 |
-
|
275 |
-
def DFG_java(root_node,index_to_code,states):
|
276 |
-
assignment=['assignment_expression']
|
277 |
-
def_statement=['variable_declarator']
|
278 |
-
increment_statement=['update_expression']
|
279 |
-
if_statement=['if_statement','else']
|
280 |
-
for_statement=['for_statement']
|
281 |
-
enhanced_for_statement=['enhanced_for_statement']
|
282 |
-
while_statement=['while_statement']
|
283 |
-
do_first_statement=[]
|
284 |
-
states=states.copy()
|
285 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
286 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
287 |
-
if root_node.type==code:
|
288 |
-
return [],states
|
289 |
-
elif code in states:
|
290 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
291 |
-
else:
|
292 |
-
if root_node.type=='identifier':
|
293 |
-
states[code]=[idx]
|
294 |
-
return [(code,idx,'comesFrom',[],[])],states
|
295 |
-
elif root_node.type in def_statement:
|
296 |
-
name=root_node.child_by_field_name('name')
|
297 |
-
value=root_node.child_by_field_name('value')
|
298 |
-
DFG=[]
|
299 |
-
if value is None:
|
300 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
301 |
-
for index in indexs:
|
302 |
-
idx,code=index_to_code[index]
|
303 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
304 |
-
states[code]=[idx]
|
305 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
306 |
-
else:
|
307 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
308 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
309 |
-
temp,states=DFG_java(value,index_to_code,states)
|
310 |
-
DFG+=temp
|
311 |
-
for index1 in name_indexs:
|
312 |
-
idx1,code1=index_to_code[index1]
|
313 |
-
for index2 in value_indexs:
|
314 |
-
idx2,code2=index_to_code[index2]
|
315 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
316 |
-
states[code1]=[idx1]
|
317 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
318 |
-
elif root_node.type in assignment:
|
319 |
-
left_nodes=root_node.child_by_field_name('left')
|
320 |
-
right_nodes=root_node.child_by_field_name('right')
|
321 |
-
DFG=[]
|
322 |
-
temp,states=DFG_java(right_nodes,index_to_code,states)
|
323 |
-
DFG+=temp
|
324 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
325 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
326 |
-
for index1 in name_indexs:
|
327 |
-
idx1,code1=index_to_code[index1]
|
328 |
-
for index2 in value_indexs:
|
329 |
-
idx2,code2=index_to_code[index2]
|
330 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
331 |
-
states[code1]=[idx1]
|
332 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
333 |
-
elif root_node.type in increment_statement:
|
334 |
-
DFG=[]
|
335 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
336 |
-
for index1 in indexs:
|
337 |
-
idx1,code1=index_to_code[index1]
|
338 |
-
for index2 in indexs:
|
339 |
-
idx2,code2=index_to_code[index2]
|
340 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
341 |
-
states[code1]=[idx1]
|
342 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
343 |
-
elif root_node.type in if_statement:
|
344 |
-
DFG=[]
|
345 |
-
current_states=states.copy()
|
346 |
-
others_states=[]
|
347 |
-
flag=False
|
348 |
-
tag=False
|
349 |
-
if 'else' in root_node.type:
|
350 |
-
tag=True
|
351 |
-
for child in root_node.children:
|
352 |
-
if 'else' in child.type:
|
353 |
-
tag=True
|
354 |
-
if child.type not in if_statement and flag is False:
|
355 |
-
temp,current_states=DFG_java(child,index_to_code,current_states)
|
356 |
-
DFG+=temp
|
357 |
-
else:
|
358 |
-
flag=True
|
359 |
-
temp,new_states=DFG_java(child,index_to_code,states)
|
360 |
-
DFG+=temp
|
361 |
-
others_states.append(new_states)
|
362 |
-
others_states.append(current_states)
|
363 |
-
if tag is False:
|
364 |
-
others_states.append(states)
|
365 |
-
new_states={}
|
366 |
-
for dic in others_states:
|
367 |
-
for key in dic:
|
368 |
-
if key not in new_states:
|
369 |
-
new_states[key]=dic[key].copy()
|
370 |
-
else:
|
371 |
-
new_states[key]+=dic[key]
|
372 |
-
for key in new_states:
|
373 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
374 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
375 |
-
elif root_node.type in for_statement:
|
376 |
-
DFG=[]
|
377 |
-
for child in root_node.children:
|
378 |
-
temp,states=DFG_java(child,index_to_code,states)
|
379 |
-
DFG+=temp
|
380 |
-
flag=False
|
381 |
-
for child in root_node.children:
|
382 |
-
if flag:
|
383 |
-
temp,states=DFG_java(child,index_to_code,states)
|
384 |
-
DFG+=temp
|
385 |
-
elif child.type=="local_variable_declaration":
|
386 |
-
flag=True
|
387 |
-
dic={}
|
388 |
-
for x in DFG:
|
389 |
-
if (x[0],x[1],x[2]) not in dic:
|
390 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
391 |
-
else:
|
392 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
393 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
394 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
395 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
396 |
-
elif root_node.type in enhanced_for_statement:
|
397 |
-
name=root_node.child_by_field_name('name')
|
398 |
-
value=root_node.child_by_field_name('value')
|
399 |
-
body=root_node.child_by_field_name('body')
|
400 |
-
DFG=[]
|
401 |
-
for i in range(2):
|
402 |
-
temp,states=DFG_java(value,index_to_code,states)
|
403 |
-
DFG+=temp
|
404 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
405 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
406 |
-
for index1 in name_indexs:
|
407 |
-
idx1,code1=index_to_code[index1]
|
408 |
-
for index2 in value_indexs:
|
409 |
-
idx2,code2=index_to_code[index2]
|
410 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
411 |
-
states[code1]=[idx1]
|
412 |
-
temp,states=DFG_java(body,index_to_code,states)
|
413 |
-
DFG+=temp
|
414 |
-
dic={}
|
415 |
-
for x in DFG:
|
416 |
-
if (x[0],x[1],x[2]) not in dic:
|
417 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
418 |
-
else:
|
419 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
420 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
421 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
422 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
423 |
-
elif root_node.type in while_statement:
|
424 |
-
DFG=[]
|
425 |
-
for i in range(2):
|
426 |
-
for child in root_node.children:
|
427 |
-
temp,states=DFG_java(child,index_to_code,states)
|
428 |
-
DFG+=temp
|
429 |
-
dic={}
|
430 |
-
for x in DFG:
|
431 |
-
if (x[0],x[1],x[2]) not in dic:
|
432 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
433 |
-
else:
|
434 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
435 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
436 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
437 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
438 |
-
else:
|
439 |
-
DFG=[]
|
440 |
-
for child in root_node.children:
|
441 |
-
if child.type in do_first_statement:
|
442 |
-
temp,states=DFG_java(child,index_to_code,states)
|
443 |
-
DFG+=temp
|
444 |
-
for child in root_node.children:
|
445 |
-
if child.type not in do_first_statement:
|
446 |
-
temp,states=DFG_java(child,index_to_code,states)
|
447 |
-
DFG+=temp
|
448 |
-
|
449 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
450 |
-
|
451 |
-
def DFG_csharp(root_node,index_to_code,states):
|
452 |
-
assignment=['assignment_expression']
|
453 |
-
def_statement=['variable_declarator']
|
454 |
-
increment_statement=['postfix_unary_expression']
|
455 |
-
if_statement=['if_statement','else']
|
456 |
-
for_statement=['for_statement']
|
457 |
-
enhanced_for_statement=['for_each_statement']
|
458 |
-
while_statement=['while_statement']
|
459 |
-
do_first_statement=[]
|
460 |
-
states=states.copy()
|
461 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
462 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
463 |
-
if root_node.type==code:
|
464 |
-
return [],states
|
465 |
-
elif code in states:
|
466 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
467 |
-
else:
|
468 |
-
if root_node.type=='identifier':
|
469 |
-
states[code]=[idx]
|
470 |
-
return [(code,idx,'comesFrom',[],[])],states
|
471 |
-
elif root_node.type in def_statement:
|
472 |
-
if len(root_node.children)==2:
|
473 |
-
name=root_node.children[0]
|
474 |
-
value=root_node.children[1]
|
475 |
-
else:
|
476 |
-
name=root_node.children[0]
|
477 |
-
value=None
|
478 |
-
DFG=[]
|
479 |
-
if value is None:
|
480 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
481 |
-
for index in indexs:
|
482 |
-
idx,code=index_to_code[index]
|
483 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
484 |
-
states[code]=[idx]
|
485 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
486 |
-
else:
|
487 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
488 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
489 |
-
temp,states=DFG_csharp(value,index_to_code,states)
|
490 |
-
DFG+=temp
|
491 |
-
for index1 in name_indexs:
|
492 |
-
idx1,code1=index_to_code[index1]
|
493 |
-
for index2 in value_indexs:
|
494 |
-
idx2,code2=index_to_code[index2]
|
495 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
496 |
-
states[code1]=[idx1]
|
497 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
498 |
-
elif root_node.type in assignment:
|
499 |
-
left_nodes=root_node.child_by_field_name('left')
|
500 |
-
right_nodes=root_node.child_by_field_name('right')
|
501 |
-
DFG=[]
|
502 |
-
temp,states=DFG_csharp(right_nodes,index_to_code,states)
|
503 |
-
DFG+=temp
|
504 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
505 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
506 |
-
for index1 in name_indexs:
|
507 |
-
idx1,code1=index_to_code[index1]
|
508 |
-
for index2 in value_indexs:
|
509 |
-
idx2,code2=index_to_code[index2]
|
510 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
511 |
-
states[code1]=[idx1]
|
512 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
513 |
-
elif root_node.type in increment_statement:
|
514 |
-
DFG=[]
|
515 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
516 |
-
for index1 in indexs:
|
517 |
-
idx1,code1=index_to_code[index1]
|
518 |
-
for index2 in indexs:
|
519 |
-
idx2,code2=index_to_code[index2]
|
520 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
521 |
-
states[code1]=[idx1]
|
522 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
523 |
-
elif root_node.type in if_statement:
|
524 |
-
DFG=[]
|
525 |
-
current_states=states.copy()
|
526 |
-
others_states=[]
|
527 |
-
flag=False
|
528 |
-
tag=False
|
529 |
-
if 'else' in root_node.type:
|
530 |
-
tag=True
|
531 |
-
for child in root_node.children:
|
532 |
-
if 'else' in child.type:
|
533 |
-
tag=True
|
534 |
-
if child.type not in if_statement and flag is False:
|
535 |
-
temp,current_states=DFG_csharp(child,index_to_code,current_states)
|
536 |
-
DFG+=temp
|
537 |
-
else:
|
538 |
-
flag=True
|
539 |
-
temp,new_states=DFG_csharp(child,index_to_code,states)
|
540 |
-
DFG+=temp
|
541 |
-
others_states.append(new_states)
|
542 |
-
others_states.append(current_states)
|
543 |
-
if tag is False:
|
544 |
-
others_states.append(states)
|
545 |
-
new_states={}
|
546 |
-
for dic in others_states:
|
547 |
-
for key in dic:
|
548 |
-
if key not in new_states:
|
549 |
-
new_states[key]=dic[key].copy()
|
550 |
-
else:
|
551 |
-
new_states[key]+=dic[key]
|
552 |
-
for key in new_states:
|
553 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
554 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
555 |
-
elif root_node.type in for_statement:
|
556 |
-
DFG=[]
|
557 |
-
for child in root_node.children:
|
558 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
559 |
-
DFG+=temp
|
560 |
-
flag=False
|
561 |
-
for child in root_node.children:
|
562 |
-
if flag:
|
563 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
564 |
-
DFG+=temp
|
565 |
-
elif child.type=="local_variable_declaration":
|
566 |
-
flag=True
|
567 |
-
dic={}
|
568 |
-
for x in DFG:
|
569 |
-
if (x[0],x[1],x[2]) not in dic:
|
570 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
571 |
-
else:
|
572 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
573 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
574 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
575 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
576 |
-
elif root_node.type in enhanced_for_statement:
|
577 |
-
name=root_node.child_by_field_name('left')
|
578 |
-
value=root_node.child_by_field_name('right')
|
579 |
-
body=root_node.child_by_field_name('body')
|
580 |
-
DFG=[]
|
581 |
-
for i in range(2):
|
582 |
-
temp,states=DFG_csharp(value,index_to_code,states)
|
583 |
-
DFG+=temp
|
584 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
585 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
586 |
-
for index1 in name_indexs:
|
587 |
-
idx1,code1=index_to_code[index1]
|
588 |
-
for index2 in value_indexs:
|
589 |
-
idx2,code2=index_to_code[index2]
|
590 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
591 |
-
states[code1]=[idx1]
|
592 |
-
temp,states=DFG_csharp(body,index_to_code,states)
|
593 |
-
DFG+=temp
|
594 |
-
dic={}
|
595 |
-
for x in DFG:
|
596 |
-
if (x[0],x[1],x[2]) not in dic:
|
597 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
598 |
-
else:
|
599 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
600 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
601 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
602 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
603 |
-
elif root_node.type in while_statement:
|
604 |
-
DFG=[]
|
605 |
-
for i in range(2):
|
606 |
-
for child in root_node.children:
|
607 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
608 |
-
DFG+=temp
|
609 |
-
dic={}
|
610 |
-
for x in DFG:
|
611 |
-
if (x[0],x[1],x[2]) not in dic:
|
612 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
613 |
-
else:
|
614 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
615 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
616 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
617 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
618 |
-
else:
|
619 |
-
DFG=[]
|
620 |
-
for child in root_node.children:
|
621 |
-
if child.type in do_first_statement:
|
622 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
623 |
-
DFG+=temp
|
624 |
-
for child in root_node.children:
|
625 |
-
if child.type not in do_first_statement:
|
626 |
-
temp,states=DFG_csharp(child,index_to_code,states)
|
627 |
-
DFG+=temp
|
628 |
-
|
629 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
def DFG_ruby(root_node,index_to_code,states):
|
635 |
-
assignment=['assignment','operator_assignment']
|
636 |
-
if_statement=['if','elsif','else','unless','when']
|
637 |
-
for_statement=['for']
|
638 |
-
while_statement=['while_modifier','until']
|
639 |
-
do_first_statement=[]
|
640 |
-
def_statement=['keyword_parameter']
|
641 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
642 |
-
states=states.copy()
|
643 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
644 |
-
if root_node.type==code:
|
645 |
-
return [],states
|
646 |
-
elif code in states:
|
647 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
648 |
-
else:
|
649 |
-
if root_node.type=='identifier':
|
650 |
-
states[code]=[idx]
|
651 |
-
return [(code,idx,'comesFrom',[],[])],states
|
652 |
-
elif root_node.type in def_statement:
|
653 |
-
name=root_node.child_by_field_name('name')
|
654 |
-
value=root_node.child_by_field_name('value')
|
655 |
-
DFG=[]
|
656 |
-
if value is None:
|
657 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
658 |
-
for index in indexs:
|
659 |
-
idx,code=index_to_code[index]
|
660 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
661 |
-
states[code]=[idx]
|
662 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
663 |
-
else:
|
664 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
665 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
666 |
-
temp,states=DFG_ruby(value,index_to_code,states)
|
667 |
-
DFG+=temp
|
668 |
-
for index1 in name_indexs:
|
669 |
-
idx1,code1=index_to_code[index1]
|
670 |
-
for index2 in value_indexs:
|
671 |
-
idx2,code2=index_to_code[index2]
|
672 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
673 |
-
states[code1]=[idx1]
|
674 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
675 |
-
elif root_node.type in assignment:
|
676 |
-
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
677 |
-
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
678 |
-
if len(right_nodes)!=len(left_nodes):
|
679 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
680 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
681 |
-
if len(left_nodes)==0:
|
682 |
-
left_nodes=[root_node.child_by_field_name('left')]
|
683 |
-
if len(right_nodes)==0:
|
684 |
-
right_nodes=[root_node.child_by_field_name('right')]
|
685 |
-
if root_node.type=="operator_assignment":
|
686 |
-
left_nodes=[root_node.children[0]]
|
687 |
-
right_nodes=[root_node.children[-1]]
|
688 |
-
|
689 |
-
DFG=[]
|
690 |
-
for node in right_nodes:
|
691 |
-
temp,states=DFG_ruby(node,index_to_code,states)
|
692 |
-
DFG+=temp
|
693 |
-
|
694 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
695 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
696 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
697 |
-
temp=[]
|
698 |
-
for token1_index in left_tokens_index:
|
699 |
-
idx1,code1=index_to_code[token1_index]
|
700 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
701 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
702 |
-
states[code1]=[idx1]
|
703 |
-
DFG+=temp
|
704 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
705 |
-
elif root_node.type in if_statement:
|
706 |
-
DFG=[]
|
707 |
-
current_states=states.copy()
|
708 |
-
others_states=[]
|
709 |
-
tag=False
|
710 |
-
if 'else' in root_node.type:
|
711 |
-
tag=True
|
712 |
-
for child in root_node.children:
|
713 |
-
if 'else' in child.type:
|
714 |
-
tag=True
|
715 |
-
if child.type not in if_statement:
|
716 |
-
temp,current_states=DFG_ruby(child,index_to_code,current_states)
|
717 |
-
DFG+=temp
|
718 |
-
else:
|
719 |
-
temp,new_states=DFG_ruby(child,index_to_code,states)
|
720 |
-
DFG+=temp
|
721 |
-
others_states.append(new_states)
|
722 |
-
others_states.append(current_states)
|
723 |
-
if tag is False:
|
724 |
-
others_states.append(states)
|
725 |
-
new_states={}
|
726 |
-
for dic in others_states:
|
727 |
-
for key in dic:
|
728 |
-
if key not in new_states:
|
729 |
-
new_states[key]=dic[key].copy()
|
730 |
-
else:
|
731 |
-
new_states[key]+=dic[key]
|
732 |
-
for key in new_states:
|
733 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
734 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
735 |
-
elif root_node.type in for_statement:
|
736 |
-
DFG=[]
|
737 |
-
for i in range(2):
|
738 |
-
left_nodes=[root_node.child_by_field_name('pattern')]
|
739 |
-
right_nodes=[root_node.child_by_field_name('value')]
|
740 |
-
assert len(right_nodes)==len(left_nodes)
|
741 |
-
for node in right_nodes:
|
742 |
-
temp,states=DFG_ruby(node,index_to_code,states)
|
743 |
-
DFG+=temp
|
744 |
-
for left_node,right_node in zip(left_nodes,right_nodes):
|
745 |
-
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
746 |
-
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
747 |
-
temp=[]
|
748 |
-
for token1_index in left_tokens_index:
|
749 |
-
idx1,code1=index_to_code[token1_index]
|
750 |
-
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
751 |
-
[index_to_code[x][0] for x in right_tokens_index]))
|
752 |
-
states[code1]=[idx1]
|
753 |
-
DFG+=temp
|
754 |
-
temp,states=DFG_ruby(root_node.child_by_field_name('body'),index_to_code,states)
|
755 |
-
DFG+=temp
|
756 |
-
dic={}
|
757 |
-
for x in DFG:
|
758 |
-
if (x[0],x[1],x[2]) not in dic:
|
759 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
760 |
-
else:
|
761 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
762 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
763 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
764 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
765 |
-
elif root_node.type in while_statement:
|
766 |
-
DFG=[]
|
767 |
-
for i in range(2):
|
768 |
-
for child in root_node.children:
|
769 |
-
temp,states=DFG_ruby(child,index_to_code,states)
|
770 |
-
DFG+=temp
|
771 |
-
dic={}
|
772 |
-
for x in DFG:
|
773 |
-
if (x[0],x[1],x[2]) not in dic:
|
774 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
775 |
-
else:
|
776 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
777 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
778 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
779 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
780 |
-
else:
|
781 |
-
DFG=[]
|
782 |
-
for child in root_node.children:
|
783 |
-
if child.type in do_first_statement:
|
784 |
-
temp,states=DFG_ruby(child,index_to_code,states)
|
785 |
-
DFG+=temp
|
786 |
-
for child in root_node.children:
|
787 |
-
if child.type not in do_first_statement:
|
788 |
-
temp,states=DFG_ruby(child,index_to_code,states)
|
789 |
-
DFG+=temp
|
790 |
-
|
791 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
792 |
-
|
793 |
-
def DFG_go(root_node,index_to_code,states):
|
794 |
-
assignment=['assignment_statement',]
|
795 |
-
def_statement=['var_spec']
|
796 |
-
increment_statement=['inc_statement']
|
797 |
-
if_statement=['if_statement','else']
|
798 |
-
for_statement=['for_statement']
|
799 |
-
enhanced_for_statement=[]
|
800 |
-
while_statement=[]
|
801 |
-
do_first_statement=[]
|
802 |
-
states=states.copy()
|
803 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
804 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
805 |
-
if root_node.type==code:
|
806 |
-
return [],states
|
807 |
-
elif code in states:
|
808 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
809 |
-
else:
|
810 |
-
if root_node.type=='identifier':
|
811 |
-
states[code]=[idx]
|
812 |
-
return [(code,idx,'comesFrom',[],[])],states
|
813 |
-
elif root_node.type in def_statement:
|
814 |
-
name=root_node.child_by_field_name('name')
|
815 |
-
value=root_node.child_by_field_name('value')
|
816 |
-
DFG=[]
|
817 |
-
if value is None:
|
818 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
819 |
-
for index in indexs:
|
820 |
-
idx,code=index_to_code[index]
|
821 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
822 |
-
states[code]=[idx]
|
823 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
824 |
-
else:
|
825 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
826 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
827 |
-
temp,states=DFG_go(value,index_to_code,states)
|
828 |
-
DFG+=temp
|
829 |
-
for index1 in name_indexs:
|
830 |
-
idx1,code1=index_to_code[index1]
|
831 |
-
for index2 in value_indexs:
|
832 |
-
idx2,code2=index_to_code[index2]
|
833 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
834 |
-
states[code1]=[idx1]
|
835 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
836 |
-
elif root_node.type in assignment:
|
837 |
-
left_nodes=root_node.child_by_field_name('left')
|
838 |
-
right_nodes=root_node.child_by_field_name('right')
|
839 |
-
DFG=[]
|
840 |
-
temp,states=DFG_go(right_nodes,index_to_code,states)
|
841 |
-
DFG+=temp
|
842 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
843 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
844 |
-
for index1 in name_indexs:
|
845 |
-
idx1,code1=index_to_code[index1]
|
846 |
-
for index2 in value_indexs:
|
847 |
-
idx2,code2=index_to_code[index2]
|
848 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
849 |
-
states[code1]=[idx1]
|
850 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
851 |
-
elif root_node.type in increment_statement:
|
852 |
-
DFG=[]
|
853 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
854 |
-
for index1 in indexs:
|
855 |
-
idx1,code1=index_to_code[index1]
|
856 |
-
for index2 in indexs:
|
857 |
-
idx2,code2=index_to_code[index2]
|
858 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
859 |
-
states[code1]=[idx1]
|
860 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
861 |
-
elif root_node.type in if_statement:
|
862 |
-
DFG=[]
|
863 |
-
current_states=states.copy()
|
864 |
-
others_states=[]
|
865 |
-
flag=False
|
866 |
-
tag=False
|
867 |
-
if 'else' in root_node.type:
|
868 |
-
tag=True
|
869 |
-
for child in root_node.children:
|
870 |
-
if 'else' in child.type:
|
871 |
-
tag=True
|
872 |
-
if child.type not in if_statement and flag is False:
|
873 |
-
temp,current_states=DFG_go(child,index_to_code,current_states)
|
874 |
-
DFG+=temp
|
875 |
-
else:
|
876 |
-
flag=True
|
877 |
-
temp,new_states=DFG_go(child,index_to_code,states)
|
878 |
-
DFG+=temp
|
879 |
-
others_states.append(new_states)
|
880 |
-
others_states.append(current_states)
|
881 |
-
if tag is False:
|
882 |
-
others_states.append(states)
|
883 |
-
new_states={}
|
884 |
-
for dic in others_states:
|
885 |
-
for key in dic:
|
886 |
-
if key not in new_states:
|
887 |
-
new_states[key]=dic[key].copy()
|
888 |
-
else:
|
889 |
-
new_states[key]+=dic[key]
|
890 |
-
for key in states:
|
891 |
-
if key not in new_states:
|
892 |
-
new_states[key]=states[key]
|
893 |
-
else:
|
894 |
-
new_states[key]+=states[key]
|
895 |
-
for key in new_states:
|
896 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
897 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
898 |
-
elif root_node.type in for_statement:
|
899 |
-
DFG=[]
|
900 |
-
for child in root_node.children:
|
901 |
-
temp,states=DFG_go(child,index_to_code,states)
|
902 |
-
DFG+=temp
|
903 |
-
flag=False
|
904 |
-
for child in root_node.children:
|
905 |
-
if flag:
|
906 |
-
temp,states=DFG_go(child,index_to_code,states)
|
907 |
-
DFG+=temp
|
908 |
-
elif child.type=="for_clause":
|
909 |
-
if child.child_by_field_name('update') is not None:
|
910 |
-
temp,states=DFG_go(child.child_by_field_name('update'),index_to_code,states)
|
911 |
-
DFG+=temp
|
912 |
-
flag=True
|
913 |
-
dic={}
|
914 |
-
for x in DFG:
|
915 |
-
if (x[0],x[1],x[2]) not in dic:
|
916 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
917 |
-
else:
|
918 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
919 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
920 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
921 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
922 |
-
else:
|
923 |
-
DFG=[]
|
924 |
-
for child in root_node.children:
|
925 |
-
if child.type in do_first_statement:
|
926 |
-
temp,states=DFG_go(child,index_to_code,states)
|
927 |
-
DFG+=temp
|
928 |
-
for child in root_node.children:
|
929 |
-
if child.type not in do_first_statement:
|
930 |
-
temp,states=DFG_go(child,index_to_code,states)
|
931 |
-
DFG+=temp
|
932 |
-
|
933 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
def DFG_php(root_node,index_to_code,states):
|
939 |
-
assignment=['assignment_expression','augmented_assignment_expression']
|
940 |
-
def_statement=['simple_parameter']
|
941 |
-
increment_statement=['update_expression']
|
942 |
-
if_statement=['if_statement','else_clause']
|
943 |
-
for_statement=['for_statement']
|
944 |
-
enhanced_for_statement=['foreach_statement']
|
945 |
-
while_statement=['while_statement']
|
946 |
-
do_first_statement=[]
|
947 |
-
states=states.copy()
|
948 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
949 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
950 |
-
if root_node.type==code:
|
951 |
-
return [],states
|
952 |
-
elif code in states:
|
953 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
954 |
-
else:
|
955 |
-
if root_node.type=='identifier':
|
956 |
-
states[code]=[idx]
|
957 |
-
return [(code,idx,'comesFrom',[],[])],states
|
958 |
-
elif root_node.type in def_statement:
|
959 |
-
name=root_node.child_by_field_name('name')
|
960 |
-
value=root_node.child_by_field_name('default_value')
|
961 |
-
DFG=[]
|
962 |
-
if value is None:
|
963 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
964 |
-
for index in indexs:
|
965 |
-
idx,code=index_to_code[index]
|
966 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
967 |
-
states[code]=[idx]
|
968 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
969 |
-
else:
|
970 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
971 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
972 |
-
temp,states=DFG_php(value,index_to_code,states)
|
973 |
-
DFG+=temp
|
974 |
-
for index1 in name_indexs:
|
975 |
-
idx1,code1=index_to_code[index1]
|
976 |
-
for index2 in value_indexs:
|
977 |
-
idx2,code2=index_to_code[index2]
|
978 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
979 |
-
states[code1]=[idx1]
|
980 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
981 |
-
elif root_node.type in assignment:
|
982 |
-
left_nodes=root_node.child_by_field_name('left')
|
983 |
-
right_nodes=root_node.child_by_field_name('right')
|
984 |
-
DFG=[]
|
985 |
-
temp,states=DFG_php(right_nodes,index_to_code,states)
|
986 |
-
DFG+=temp
|
987 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
988 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
989 |
-
for index1 in name_indexs:
|
990 |
-
idx1,code1=index_to_code[index1]
|
991 |
-
for index2 in value_indexs:
|
992 |
-
idx2,code2=index_to_code[index2]
|
993 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
994 |
-
states[code1]=[idx1]
|
995 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
996 |
-
elif root_node.type in increment_statement:
|
997 |
-
DFG=[]
|
998 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
999 |
-
for index1 in indexs:
|
1000 |
-
idx1,code1=index_to_code[index1]
|
1001 |
-
for index2 in indexs:
|
1002 |
-
idx2,code2=index_to_code[index2]
|
1003 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1004 |
-
states[code1]=[idx1]
|
1005 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1006 |
-
elif root_node.type in if_statement:
|
1007 |
-
DFG=[]
|
1008 |
-
current_states=states.copy()
|
1009 |
-
others_states=[]
|
1010 |
-
flag=False
|
1011 |
-
tag=False
|
1012 |
-
if 'else' in root_node.type:
|
1013 |
-
tag=True
|
1014 |
-
for child in root_node.children:
|
1015 |
-
if 'else' in child.type:
|
1016 |
-
tag=True
|
1017 |
-
if child.type not in if_statement and flag is False:
|
1018 |
-
temp,current_states=DFG_php(child,index_to_code,current_states)
|
1019 |
-
DFG+=temp
|
1020 |
-
else:
|
1021 |
-
flag=True
|
1022 |
-
temp,new_states=DFG_php(child,index_to_code,states)
|
1023 |
-
DFG+=temp
|
1024 |
-
others_states.append(new_states)
|
1025 |
-
others_states.append(current_states)
|
1026 |
-
new_states={}
|
1027 |
-
for dic in others_states:
|
1028 |
-
for key in dic:
|
1029 |
-
if key not in new_states:
|
1030 |
-
new_states[key]=dic[key].copy()
|
1031 |
-
else:
|
1032 |
-
new_states[key]+=dic[key]
|
1033 |
-
for key in states:
|
1034 |
-
if key not in new_states:
|
1035 |
-
new_states[key]=states[key]
|
1036 |
-
else:
|
1037 |
-
new_states[key]+=states[key]
|
1038 |
-
for key in new_states:
|
1039 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
1040 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
1041 |
-
elif root_node.type in for_statement:
|
1042 |
-
DFG=[]
|
1043 |
-
for child in root_node.children:
|
1044 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1045 |
-
DFG+=temp
|
1046 |
-
flag=False
|
1047 |
-
for child in root_node.children:
|
1048 |
-
if flag:
|
1049 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1050 |
-
DFG+=temp
|
1051 |
-
elif child.type=="assignment_expression":
|
1052 |
-
flag=True
|
1053 |
-
dic={}
|
1054 |
-
for x in DFG:
|
1055 |
-
if (x[0],x[1],x[2]) not in dic:
|
1056 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1057 |
-
else:
|
1058 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1059 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1060 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1061 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1062 |
-
elif root_node.type in enhanced_for_statement:
|
1063 |
-
name=None
|
1064 |
-
value=None
|
1065 |
-
for child in root_node.children:
|
1066 |
-
if child.type=='variable_name' and value is None:
|
1067 |
-
value=child
|
1068 |
-
elif child.type=='variable_name' and name is None:
|
1069 |
-
name=child
|
1070 |
-
break
|
1071 |
-
body=root_node.child_by_field_name('body')
|
1072 |
-
DFG=[]
|
1073 |
-
for i in range(2):
|
1074 |
-
temp,states=DFG_php(value,index_to_code,states)
|
1075 |
-
DFG+=temp
|
1076 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
1077 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
1078 |
-
for index1 in name_indexs:
|
1079 |
-
idx1,code1=index_to_code[index1]
|
1080 |
-
for index2 in value_indexs:
|
1081 |
-
idx2,code2=index_to_code[index2]
|
1082 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1083 |
-
states[code1]=[idx1]
|
1084 |
-
temp,states=DFG_php(body,index_to_code,states)
|
1085 |
-
DFG+=temp
|
1086 |
-
dic={}
|
1087 |
-
for x in DFG:
|
1088 |
-
if (x[0],x[1],x[2]) not in dic:
|
1089 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1090 |
-
else:
|
1091 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1092 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1093 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1094 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1095 |
-
elif root_node.type in while_statement:
|
1096 |
-
DFG=[]
|
1097 |
-
for i in range(2):
|
1098 |
-
for child in root_node.children:
|
1099 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1100 |
-
DFG+=temp
|
1101 |
-
dic={}
|
1102 |
-
for x in DFG:
|
1103 |
-
if (x[0],x[1],x[2]) not in dic:
|
1104 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1105 |
-
else:
|
1106 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1107 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1108 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1109 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1110 |
-
else:
|
1111 |
-
DFG=[]
|
1112 |
-
for child in root_node.children:
|
1113 |
-
if child.type in do_first_statement:
|
1114 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1115 |
-
DFG+=temp
|
1116 |
-
for child in root_node.children:
|
1117 |
-
if child.type not in do_first_statement:
|
1118 |
-
temp,states=DFG_php(child,index_to_code,states)
|
1119 |
-
DFG+=temp
|
1120 |
-
|
1121 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1122 |
-
|
1123 |
-
|
1124 |
-
def DFG_javascript(root_node,index_to_code,states):
|
1125 |
-
assignment=['assignment_pattern','augmented_assignment_expression']
|
1126 |
-
def_statement=['variable_declarator']
|
1127 |
-
increment_statement=['update_expression']
|
1128 |
-
if_statement=['if_statement','else']
|
1129 |
-
for_statement=['for_statement']
|
1130 |
-
enhanced_for_statement=[]
|
1131 |
-
while_statement=['while_statement']
|
1132 |
-
do_first_statement=[]
|
1133 |
-
states=states.copy()
|
1134 |
-
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
1135 |
-
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
1136 |
-
if root_node.type==code:
|
1137 |
-
return [],states
|
1138 |
-
elif code in states:
|
1139 |
-
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
1140 |
-
else:
|
1141 |
-
if root_node.type=='identifier':
|
1142 |
-
states[code]=[idx]
|
1143 |
-
return [(code,idx,'comesFrom',[],[])],states
|
1144 |
-
elif root_node.type in def_statement:
|
1145 |
-
name=root_node.child_by_field_name('name')
|
1146 |
-
value=root_node.child_by_field_name('value')
|
1147 |
-
DFG=[]
|
1148 |
-
if value is None:
|
1149 |
-
indexs=tree_to_variable_index(name,index_to_code)
|
1150 |
-
for index in indexs:
|
1151 |
-
idx,code=index_to_code[index]
|
1152 |
-
DFG.append((code,idx,'comesFrom',[],[]))
|
1153 |
-
states[code]=[idx]
|
1154 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1155 |
-
else:
|
1156 |
-
name_indexs=tree_to_variable_index(name,index_to_code)
|
1157 |
-
value_indexs=tree_to_variable_index(value,index_to_code)
|
1158 |
-
temp,states=DFG_javascript(value,index_to_code,states)
|
1159 |
-
DFG+=temp
|
1160 |
-
for index1 in name_indexs:
|
1161 |
-
idx1,code1=index_to_code[index1]
|
1162 |
-
for index2 in value_indexs:
|
1163 |
-
idx2,code2=index_to_code[index2]
|
1164 |
-
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
1165 |
-
states[code1]=[idx1]
|
1166 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1167 |
-
elif root_node.type in assignment:
|
1168 |
-
left_nodes=root_node.child_by_field_name('left')
|
1169 |
-
right_nodes=root_node.child_by_field_name('right')
|
1170 |
-
DFG=[]
|
1171 |
-
temp,states=DFG_javascript(right_nodes,index_to_code,states)
|
1172 |
-
DFG+=temp
|
1173 |
-
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
1174 |
-
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
1175 |
-
for index1 in name_indexs:
|
1176 |
-
idx1,code1=index_to_code[index1]
|
1177 |
-
for index2 in value_indexs:
|
1178 |
-
idx2,code2=index_to_code[index2]
|
1179 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1180 |
-
states[code1]=[idx1]
|
1181 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1182 |
-
elif root_node.type in increment_statement:
|
1183 |
-
DFG=[]
|
1184 |
-
indexs=tree_to_variable_index(root_node,index_to_code)
|
1185 |
-
for index1 in indexs:
|
1186 |
-
idx1,code1=index_to_code[index1]
|
1187 |
-
for index2 in indexs:
|
1188 |
-
idx2,code2=index_to_code[index2]
|
1189 |
-
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1190 |
-
states[code1]=[idx1]
|
1191 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1192 |
-
elif root_node.type in if_statement:
|
1193 |
-
DFG=[]
|
1194 |
-
current_states=states.copy()
|
1195 |
-
others_states=[]
|
1196 |
-
flag=False
|
1197 |
-
tag=False
|
1198 |
-
if 'else' in root_node.type:
|
1199 |
-
tag=True
|
1200 |
-
for child in root_node.children:
|
1201 |
-
if 'else' in child.type:
|
1202 |
-
tag=True
|
1203 |
-
if child.type not in if_statement and flag is False:
|
1204 |
-
temp,current_states=DFG_javascript(child,index_to_code,current_states)
|
1205 |
-
DFG+=temp
|
1206 |
-
else:
|
1207 |
-
flag=True
|
1208 |
-
temp,new_states=DFG_javascript(child,index_to_code,states)
|
1209 |
-
DFG+=temp
|
1210 |
-
others_states.append(new_states)
|
1211 |
-
others_states.append(current_states)
|
1212 |
-
if tag is False:
|
1213 |
-
others_states.append(states)
|
1214 |
-
new_states={}
|
1215 |
-
for dic in others_states:
|
1216 |
-
for key in dic:
|
1217 |
-
if key not in new_states:
|
1218 |
-
new_states[key]=dic[key].copy()
|
1219 |
-
else:
|
1220 |
-
new_states[key]+=dic[key]
|
1221 |
-
for key in states:
|
1222 |
-
if key not in new_states:
|
1223 |
-
new_states[key]=states[key]
|
1224 |
-
else:
|
1225 |
-
new_states[key]+=states[key]
|
1226 |
-
for key in new_states:
|
1227 |
-
new_states[key]=sorted(list(set(new_states[key])))
|
1228 |
-
return sorted(DFG,key=lambda x:x[1]),new_states
|
1229 |
-
elif root_node.type in for_statement:
|
1230 |
-
DFG=[]
|
1231 |
-
for child in root_node.children:
|
1232 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1233 |
-
DFG+=temp
|
1234 |
-
flag=False
|
1235 |
-
for child in root_node.children:
|
1236 |
-
if flag:
|
1237 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1238 |
-
DFG+=temp
|
1239 |
-
elif child.type=="variable_declaration":
|
1240 |
-
flag=True
|
1241 |
-
dic={}
|
1242 |
-
for x in DFG:
|
1243 |
-
if (x[0],x[1],x[2]) not in dic:
|
1244 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1245 |
-
else:
|
1246 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1247 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1248 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1249 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1250 |
-
elif root_node.type in while_statement:
|
1251 |
-
DFG=[]
|
1252 |
-
for i in range(2):
|
1253 |
-
for child in root_node.children:
|
1254 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1255 |
-
DFG+=temp
|
1256 |
-
dic={}
|
1257 |
-
for x in DFG:
|
1258 |
-
if (x[0],x[1],x[2]) not in dic:
|
1259 |
-
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1260 |
-
else:
|
1261 |
-
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1262 |
-
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1263 |
-
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1264 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1265 |
-
else:
|
1266 |
-
DFG=[]
|
1267 |
-
for child in root_node.children:
|
1268 |
-
if child.type in do_first_statement:
|
1269 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1270 |
-
DFG+=temp
|
1271 |
-
for child in root_node.children:
|
1272 |
-
if child.type not in do_first_statement:
|
1273 |
-
temp,states=DFG_javascript(child,index_to_code,states)
|
1274 |
-
DFG+=temp
|
1275 |
-
|
1276 |
-
return sorted(DFG,key=lambda x:x[1]),states
|
1277 |
|
1278 |
dfg_function={
|
1279 |
'python':DFG_python,
|
@@ -1288,8 +22,9 @@ dfg_function={
|
|
1288 |
def calc_syntax_match(references, candidate, lang):
|
1289 |
return corpus_syntax_match([references], [candidate], lang)
|
1290 |
|
1291 |
-
def corpus_syntax_match(references, candidates, lang):
|
1292 |
-
|
|
|
1293 |
parser = Parser()
|
1294 |
parser.set_language(JAVA_LANGUAGE)
|
1295 |
match_count = 0
|
|
|
1 |
# Copyright (c) Microsoft Corporation.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
+
from .parsercode.DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
5 |
+
from .parsercode.utils import (remove_comments_and_docstrings,
|
6 |
+
tree_to_token_index,
|
7 |
+
index_to_code_token,
|
8 |
+
tree_to_variable_index)
|
9 |
from tree_sitter import Language, Parser
|
10 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
dfg_function={
|
13 |
'python':DFG_python,
|
|
|
22 |
def calc_syntax_match(references, candidate, lang):
|
23 |
return corpus_syntax_match([references], [candidate], lang)
|
24 |
|
25 |
+
def corpus_syntax_match(references, candidates, lang):
|
26 |
+
curr_path = os.path.dirname(os.path.abspath(__file__))
|
27 |
+
JAVA_LANGUAGE = Language(curr_path + '/parsercode/my-languages.so', lang)
|
28 |
parser = Parser()
|
29 |
parser.set_language(JAVA_LANGUAGE)
|
30 |
match_count = 0
|
weighted_ngram_match.py
CHANGED
@@ -17,107 +17,9 @@ import sys
|
|
17 |
from fractions import Fraction
|
18 |
import warnings
|
19 |
from collections import Counter
|
20 |
-
import pdb
|
21 |
-
|
22 |
-
from itertools import chain
|
23 |
-
|
24 |
-
def pad_sequence(
|
25 |
-
sequence,
|
26 |
-
n,
|
27 |
-
pad_left=False,
|
28 |
-
pad_right=False,
|
29 |
-
left_pad_symbol=None,
|
30 |
-
right_pad_symbol=None,
|
31 |
-
):
|
32 |
-
"""
|
33 |
-
Returns a padded sequence of items before ngram extraction.
|
34 |
-
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
35 |
-
['<s>', 1, 2, 3, 4, 5, '</s>']
|
36 |
-
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
37 |
-
['<s>', 1, 2, 3, 4, 5]
|
38 |
-
>>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
39 |
-
[1, 2, 3, 4, 5, '</s>']
|
40 |
-
:param sequence: the source data to be padded
|
41 |
-
:type sequence: sequence or iter
|
42 |
-
:param n: the degree of the ngrams
|
43 |
-
:type n: int
|
44 |
-
:param pad_left: whether the ngrams should be left-padded
|
45 |
-
:type pad_left: bool
|
46 |
-
:param pad_right: whether the ngrams should be right-padded
|
47 |
-
:type pad_right: bool
|
48 |
-
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
49 |
-
:type left_pad_symbol: any
|
50 |
-
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
51 |
-
:type right_pad_symbol: any
|
52 |
-
:rtype: sequence or iter
|
53 |
-
"""
|
54 |
-
sequence = iter(sequence)
|
55 |
-
if pad_left:
|
56 |
-
sequence = chain((left_pad_symbol,) * (n - 1), sequence)
|
57 |
-
if pad_right:
|
58 |
-
sequence = chain(sequence, (right_pad_symbol,) * (n - 1))
|
59 |
-
return sequence
|
60 |
-
|
61 |
-
|
62 |
-
# add a flag to pad the sequence so we get peripheral ngrams?
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
sequence,
|
67 |
-
n,
|
68 |
-
pad_left=False,
|
69 |
-
pad_right=False,
|
70 |
-
left_pad_symbol=None,
|
71 |
-
right_pad_symbol=None,
|
72 |
-
):
|
73 |
-
"""
|
74 |
-
Return the ngrams generated from a sequence of items, as an iterator.
|
75 |
-
For example:
|
76 |
-
>>> from nltk.util import ngrams
|
77 |
-
>>> list(ngrams([1,2,3,4,5], 3))
|
78 |
-
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
|
79 |
-
Wrap with list for a list version of this function. Set pad_left
|
80 |
-
or pad_right to true in order to get additional ngrams:
|
81 |
-
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
|
82 |
-
[(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
|
83 |
-
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
84 |
-
[(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
85 |
-
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
86 |
-
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
|
87 |
-
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
88 |
-
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
89 |
-
:param sequence: the source data to be converted into ngrams
|
90 |
-
:type sequence: sequence or iter
|
91 |
-
:param n: the degree of the ngrams
|
92 |
-
:type n: int
|
93 |
-
:param pad_left: whether the ngrams should be left-padded
|
94 |
-
:type pad_left: bool
|
95 |
-
:param pad_right: whether the ngrams should be right-padded
|
96 |
-
:type pad_right: bool
|
97 |
-
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
98 |
-
:type left_pad_symbol: any
|
99 |
-
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
100 |
-
:type right_pad_symbol: any
|
101 |
-
:rtype: sequence or iter
|
102 |
-
"""
|
103 |
-
sequence = pad_sequence(
|
104 |
-
sequence, n, pad_left, pad_right, left_pad_symbol, right_pad_symbol
|
105 |
-
)
|
106 |
-
|
107 |
-
history = []
|
108 |
-
while n > 1:
|
109 |
-
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
110 |
-
try:
|
111 |
-
next_item = next(sequence)
|
112 |
-
except StopIteration:
|
113 |
-
# no more data, terminate the generator
|
114 |
-
return
|
115 |
-
history.append(next_item)
|
116 |
-
n -= 1
|
117 |
-
for item in sequence:
|
118 |
-
history.append(item)
|
119 |
-
yield tuple(history)
|
120 |
-
del history[0]
|
121 |
|
122 |
|
123 |
def sentence_bleu(
|
@@ -184,12 +86,12 @@ def sentence_bleu(
|
|
184 |
:return: The sentence-level BLEU score.
|
185 |
:rtype: float
|
186 |
"""
|
187 |
-
return
|
188 |
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
189 |
)
|
190 |
|
191 |
|
192 |
-
def
|
193 |
list_of_references,
|
194 |
hypotheses,
|
195 |
weights=(0.25, 0.25, 0.25, 0.25),
|
|
|
17 |
from fractions import Fraction
|
18 |
import warnings
|
19 |
from collections import Counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
from .utils import ngrams
|
22 |
+
import pdb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def sentence_bleu(
|
|
|
86 |
:return: The sentence-level BLEU score.
|
87 |
:rtype: float
|
88 |
"""
|
89 |
+
return corpus_weighted_ngram_match(
|
90 |
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
91 |
)
|
92 |
|
93 |
|
94 |
+
def corpus_weighted_ngram_match(
|
95 |
list_of_references,
|
96 |
hypotheses,
|
97 |
weights=(0.25, 0.25, 0.25, 0.25),
|