File size: 1,496 Bytes
2c8bbe1
 
 
 
0a00900
f23c87b
599d8a3
1185034
2c8bbe1
 
6fba779
 
2c8bbe1
 
 
435bf26
79d5442
6fba779
2c8bbe1
435bf26
11b46ec
1185034
1ecbf8c
8eefa03
2c8bbe1
 
 
8eefa03
2c8bbe1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
import gradio as gr
from PIL import Image, ImageOps
import numpy as np
os.system("pip install opencv-python")
os.system("pip install torch")
os.system("pip install jinja2")

if not os.path.exists("data"):
    os.mkdir("data")
if not os.path.exists("results"):
    os.mkdir("results")

def infer(img):
    width, height = img.size
    res=np.ones_like((width, height,3))
    print(res.shape)
    print(width)
    img.save("./data/data.png")
    img.save("./results/data.png")
    os.system('python main_test_swinir.py')
    res=Image.open("./results/data.png")
    #return res
    return "./results/data.png","./results/data.png"


inputs = [gr.inputs.Image(type='pil', label="Original Image")]
outputs = [gr.outputs.Image(type="file", label="output"), gr.outputs.File(label="download")]
title = "SwinIR: Image Restoration Using Swin Transformer,Super-Resolution part "
description = "Gradio demo for SwinIR: Super-Resolution part. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2108.10257.pdf' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
examples = [
    ['butterfly.png']
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch(
    enable_queue=True, cache_examples=True)