import gradio as gr from transformers import pipeline from transformers import Conversation pipe = pipeline("conversational", model="PygmalionAI/pygmalion-6b") conversation = Conversation() conversation.add_message({"role": "assistant", "content": "How can I help you?"}) memory = [] def run_conversation(message, history): #cache memory from user memory.append({"role": "user", "content": message}) print(history) if len(history) > 0: for i in history: conversation.add_message({"role":"user", "content":i[0]}) conversation.add_message({"role": "assistant", "content": i[1]}) for i in memory: conversation.add_message(i) print(conversation) pipe(conversation) return conversation.generated_responses[-1] demo = gr.ChatInterface( run_conversation, chatbot = gr.Chatbot(height=500), textbox = gr.Textbox(placeholder="Chat with me!", scale=7), title = "Test", description="Chat with me!" examples=["hello"] ) if __name__ == "__main__": demo.queue().launch()