demo / dataset /layout_dataset.py
liuhaotian's picture
Upload app
f9a674e
raw
history blame
7.69 kB
import json, os, random, math
from collections import defaultdict
from copy import deepcopy
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import numpy as np
from PIL import Image, ImageOps
from .base_dataset import BaseDataset, check_filenames_in_zipdata
from io import BytesIO
def clean_annotations(annotations):
for anno in annotations:
anno.pop("segmentation", None)
anno.pop("area", None)
anno.pop("iscrowd", None)
anno.pop("id", None)
def make_a_sentence(obj_names, clean=False):
if clean:
obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
caption = ""
tokens_positive = []
for obj_name in obj_names:
start_len = len(caption)
caption += obj_name
end_len = len(caption)
caption += ", "
tokens_positive.append(
[[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
)
caption = caption[:-2] # remove last ", "
return caption #, tokens_positive
class LayoutDataset(BaseDataset):
"""
Note: this dataset can somehow be achieved in cd_dataset.CDDataset
Since if you donot set prob_real_caption=0 in CDDataset, then that
dataset will only use detection annotations. However, in that dataset,
we do not remove images but remove boxes.
However, in layout2img works, people will just resize raw image data into 256*256,
thus they pre-calculate box size and apply min_box_size before min/max_boxes_per_image.
And then they will remove images if does not follow the rule.
These two different methods will lead to different number of training/val images.
Thus this dataset here is only for layout2img.
"""
def __init__(self,
image_root,
instances_json_path,
stuff_json_path,
category_embedding_path,
fake_caption_type = 'empty',
image_size=256,
max_samples=None,
min_box_size=0.02,
min_boxes_per_image=3,
max_boxes_per_image=8,
include_other=False,
random_flip=True
):
super().__init__(random_crop=None, random_flip=None, image_size=None) # we only use vis_getitem func in BaseDataset, donot use the others.
assert fake_caption_type in ['empty', 'made']
self.image_root = image_root
self.instances_json_path = instances_json_path
self.stuff_json_path = stuff_json_path
self.category_embedding_path = category_embedding_path
self.fake_caption_type = fake_caption_type
self.image_size = image_size
self.max_samples = max_samples
self.min_box_size = min_box_size
self.min_boxes_per_image = min_boxes_per_image
self.max_boxes_per_image = max_boxes_per_image
self.include_other = include_other
self.random_flip = random_flip
self.transform = transforms.Compose([transforms.Resize( (image_size, image_size) ),
transforms.ToTensor(),
transforms.Lambda(lambda t: (t * 2) - 1) ])
# Load all jsons
with open(instances_json_path, 'r') as f:
instances_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
clean_annotations(instances_data["annotations"])
self.instances_data = instances_data
with open(stuff_json_path, 'r') as f:
stuff_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
clean_annotations(stuff_data["annotations"])
self.stuff_data = stuff_data
# Load preprocessed name embedding
self.category_embeddings = torch.load(category_embedding_path)
self.embedding_len = list( self.category_embeddings.values() )[0].shape[0]
# Misc
self.image_ids = [] # main list for selecting images
self.image_id_to_filename = {} # file names used to read image
self.image_id_to_size = {} # original size of this image
assert instances_data['images'] == stuff_data["images"]
for image_data in instances_data['images']:
image_id = image_data['id']
filename = image_data['file_name']
width = image_data['width']
height = image_data['height']
self.image_ids.append(image_id)
self.image_id_to_filename[image_id] = filename
self.image_id_to_size[image_id] = (width, height)
# All category names (including things and stuff)
self.things_id_list = []
self.stuff_id_list = []
self.object_idx_to_name = {}
for category_data in instances_data['categories']:
self.things_id_list.append( category_data['id'] )
self.object_idx_to_name[category_data['id']] = category_data['name']
for category_data in stuff_data['categories']:
self.stuff_id_list.append( category_data['id'] )
self.object_idx_to_name[category_data['id']] = category_data['name']
self.all_categories = [ self.object_idx_to_name.get(k, None) for k in range(183+1) ]
# Add object data from instances and stuff
self.image_id_to_objects = defaultdict(list)
self.select_objects( instances_data['annotations'] )
self.select_objects( stuff_data['annotations'] )
# Prune images that have too few or too many objects
new_image_ids = []
for image_id in self.image_ids:
num_objs = len(self.image_id_to_objects[image_id])
if self.min_boxes_per_image <= num_objs <= self.max_boxes_per_image:
new_image_ids.append(image_id)
self.image_ids = new_image_ids
# Check if all filenames can be found in the zip file
all_filenames = [self.image_id_to_filename[idx] for idx in self.image_ids]
check_filenames_in_zipdata(all_filenames, image_root)
def select_objects(self, annotations):
for object_anno in annotations:
image_id = object_anno['image_id']
_, _, w, h = object_anno['bbox']
W, H = self.image_id_to_size[image_id]
box_area = (w * h) / (W * H)
box_ok = box_area > self.min_box_size
object_name = self.object_idx_to_name[object_anno['category_id']]
other_ok = object_name != 'other' or self.include_other
if box_ok and other_ok:
self.image_id_to_objects[image_id].append(object_anno)
def total_images(self):
return len(self)
def __getitem__(self, index):
if self.max_boxes_per_image > 99:
assert False, "Are you sure setting such large number of boxes?"
out = {}
image_id = self.image_ids[index]
out['id'] = image_id
flip = self.random_flip and random.random()<0.5
# Image
filename = self.image_id_to_filename[image_id]
zip_file = self.fetch_zipfile(self.image_root)
image = Image.open(BytesIO(zip_file.read(filename))).convert('RGB')
WW, HH = image.size
if flip:
image = ImageOps.mirror(image)
out["image"] = self.transform(image)
this_image_obj_annos = deepcopy(self.image_id_to_objects[image_id])
# Make a sentence
obj_names = [] # used for make a sentence
boxes = torch.zeros(self.max_boxes_per_image, 4)
masks = torch.zeros(self.max_boxes_per_image)
positive_embeddings = torch.zeros(self.max_boxes_per_image, self.embedding_len)
for idx, object_anno in enumerate(this_image_obj_annos):
obj_name = self.object_idx_to_name[ object_anno['category_id'] ]
obj_names.append(obj_name)
x, y, w, h = object_anno['bbox']
x0 = x / WW
y0 = y / HH
x1 = (x + w) / WW
y1 = (y + h) / HH
if flip:
x0, x1 = 1-x1, 1-x0
boxes[idx] = torch.tensor([x0,y0,x1,y1])
masks[idx] = 1
positive_embeddings[idx] = self.category_embeddings[obj_name]
if self.fake_caption_type == 'empty':
caption = ""
else:
caption = make_a_sentence(obj_names, clean=True)
out["caption"] = caption
out["boxes"] = boxes
out["masks"] = masks
out["positive_embeddings"] = positive_embeddings
return out
def __len__(self):
if self.max_samples is None:
return len(self.image_ids)
return min(len(self.image_ids), self.max_samples)