|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain_community.document_loaders import TextLoader |
|
from langchain_community.document_loaders import DirectoryLoader |
|
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings |
|
from langchain_community.vectorstores import Chroma |
|
import streamlit as st |
|
|
|
text_loader_kwargs={'autodetect_encoding': True} |
|
loader = DirectoryLoader("src_info_hf", glob="./*.txt", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs) |
|
docs = loader.load() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") |
|
|
|
|
|
chdb = Chroma.from_documents(docs, embedding_function, collection_metadata={"hnsw:space": "cosine"}, persist_directory='chroma_db_info') |
|
|
|
|
|
text = st.text_area("enter text") |
|
if text: |
|
docs = chdb.similarity_search_with_score(query, k=3) |
|
docnum = len(docs) |
|
index = 0 |
|
ret = '' |
|
for ii in range(docnum): |
|
doc = docs[ii][0] |
|
score = docs[ii][1] |
|
ret += f"Return {index} ({score:.4f}) :\n{doc.page_content}\n" |
|
st.ret |
|
|