|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain_community.document_loaders import TextLoader |
|
from langchain_community.document_loaders import DirectoryLoader |
|
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings |
|
from langchain_community.vectorstores import Chroma |
|
import streamlit as st |
|
|
|
embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") |
|
chdb = Chroma(persist_directory="./chroma_db_info", embedding_function=embedding_function) |
|
|
|
query = st.text_input("Enter a query") |
|
disnum = 3 |
|
if query: |
|
docs = chdb.similarity_search_with_score(query) |
|
docnum = len(docs) |
|
index = 0 |
|
ret = f"Query:{query}\n" |
|
for ii in range(docnum): |
|
doc = docs[ii][0] |
|
score = docs[ii][1] |
|
ret += f"Return {index} ({score:.4f}) :\n{doc.page_content}\n" |
|
index += 1 |
|
if index > disnum: |
|
break |
|
st.text(ret) |
|
|