Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,613 Bytes
04eb2f6 9887d4c 04eb2f6 9887d4c c26cea9 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 b3b1ca1 0820b2f 7acfd95 04eb2f6 9887d4c 04eb2f6 af079bb 04eb2f6 af079bb 9887d4c 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 5072f90 04eb2f6 9887d4c 5072f90 9887d4c eb3bbe6 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 a5af738 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 9887d4c 04eb2f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import AuraFlowPipeline
import re
import random
import numpy as np
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
# AuraFlow model
pipe = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3",
torch_dtype=torch.float16
).to(device)
# VLM Captioner
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")
# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-fal-prompt-enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Florence caption function
def florence_caption(image):
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<MORE_DETAILED_CAPTION>"]
# VLM Captioner function
def create_captions_rich(image):
prompt = "caption en"
model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False)
generation = generation[0][input_len:]
decoded = vlm_processor.decode(generation, skip_special_tokens=True)
return modify_caption(decoded)
# Helper function for caption modification
def modify_caption(caption: str) -> str:
prefix_substrings = [
('captured from ', ''),
('captured at ', '')
]
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
replacers = {opening: replacer for opening, replacer in prefix_substrings}
def replace_fn(match):
return replacers[match.group(0)]
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
if model_choice == "Medium":
result = enhancer_medium("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
else: # Long
result = enhancer_long("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
return enhanced_text
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed
@spaces.GPU(duration=100)
def process_workflow(image, text_prompt, vlm_model_choice, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if image is not None:
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if vlm_model_choice == "Long Captioner":
prompt = create_captions_rich(image)
else: # Florence
prompt = florence_caption(image)
else:
prompt = text_prompt
if use_enhancer:
prompt = enhance_prompt(prompt, model_choice)
generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps)
return generated_image, prompt, used_seed
custom_css = """
.input-group, .output-group {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #f9f9f9;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
title = """<h1 align="center">AuraFlow with VLM Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/fal/AuraFlow" target="_blank">[AuraFlow Model]</a>
<a href="https://huggingface.co/spaces/multimodalart/AuraFlow" target="_blank">[Original Space]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/sd3-long-captioner-v2" target="_blank">[Long Captioner Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-fal-prompt-enchance" target="_blank">[Prompt Enhancer Medium]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes="input-group"):
input_image = gr.Image(label="Input Image (VLM Captioner)")
vlm_model_choice = gr.Radio(["Florence-2", "Long Captioner"], label="VLM Model", value="Florence-2")
with gr.Accordion("Advanced Settings", open=False):
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Medium")
negative_prompt = gr.Textbox(label="Negative Prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
with gr.Column(scale=1):
with gr.Group(elem_classes="output-group"):
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
final_prompt = gr.Textbox(label="Final Prompt Used")
used_seed = gr.Number(label="Seed Used")
generate_btn.click(
fn=process_workflow,
inputs=[
input_image, text_prompt, vlm_model_choice, use_enhancer, model_choice,
negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
],
outputs=[output_image, final_prompt, used_seed]
)
demo.launch(debug=True) |