File size: 8,613 Bytes
04eb2f6
9887d4c
 
04eb2f6
 
 
 
 
 
 
9887d4c
c26cea9
 
 
04eb2f6
9887d4c
04eb2f6
9887d4c
04eb2f6
b3b1ca1
0820b2f
7acfd95
04eb2f6
9887d4c
04eb2f6
 
 
af079bb
04eb2f6
 
 
 
 
 
 
af079bb
9887d4c
 
 
04eb2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9887d4c
04eb2f6
9887d4c
 
04eb2f6
 
9887d4c
 
04eb2f6
 
 
 
 
5072f90
04eb2f6
 
9887d4c
5072f90
9887d4c
eb3bbe6
04eb2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9887d4c
 
 
04eb2f6
 
 
 
 
 
 
 
 
 
 
9887d4c
04eb2f6
 
9887d4c
04eb2f6
 
 
 
 
9887d4c
04eb2f6
 
 
a5af738
04eb2f6
 
 
 
 
 
 
9887d4c
04eb2f6
9887d4c
04eb2f6
 
 
 
 
 
 
 
 
 
 
 
 
9887d4c
 
04eb2f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import AuraFlowPipeline
import re
import random
import numpy as np

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

# AuraFlow model
pipe = AuraFlowPipeline.from_pretrained(
    "fal/AuraFlow-v0.3",
    torch_dtype=torch.float16
).to(device)

# VLM Captioner
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")

# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-fal-prompt-enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Florence caption function
def florence_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<MORE_DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<MORE_DETAILED_CAPTION>"]

# VLM Captioner function
def create_captions_rich(image):
    prompt = "caption en"
    model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device)
    input_len = model_inputs["input_ids"].shape[-1]

    with torch.inference_mode():
        generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False)
        generation = generation[0][input_len:]
        decoded = vlm_processor.decode(generation, skip_special_tokens=True)

    return modify_caption(decoded)

# Helper function for caption modification
def modify_caption(caption: str) -> str:
    prefix_substrings = [
        ('captured from ', ''),
        ('captured at ', '')
    ]
    pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
    replacers = {opening: replacer for opening, replacer in prefix_substrings}
    
    def replace_fn(match):
        return replacers[match.group(0)]
    
    return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)

# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
    if model_choice == "Medium":
        result = enhancer_medium("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
        
    else:  # Long
        result = enhancer_long("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    
    return enhanced_text

def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0]
    
    return image, seed

@spaces.GPU(duration=100)
def process_workflow(image, text_prompt, vlm_model_choice, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if image is not None:
        # Convert image to PIL if it's not already
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        if vlm_model_choice == "Long Captioner":
            prompt = create_captions_rich(image)
        else:  # Florence
            prompt = florence_caption(image)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt, model_choice)
    
    generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps)
    
    return generated_image, prompt, used_seed

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">AuraFlow with VLM Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/fal/AuraFlow" target="_blank">[AuraFlow Model]</a>
<a href="https://huggingface.co/spaces/multimodalart/AuraFlow" target="_blank">[Original Space]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/sd3-long-captioner-v2" target="_blank">[Long Captioner Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-fal-prompt-enchance" target="_blank">[Prompt Enhancer Medium]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (VLM Captioner)")
                vlm_model_choice = gr.Radio(["Florence-2", "Long Captioner"], label="VLM Model", value="Florence-2")
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Medium")
                negative_prompt = gr.Textbox(label="Negative Prompt")
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
            
            generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, vlm_model_choice, use_enhancer, model_choice,
            negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)