Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration | |
from qwen_vl_utils import process_vision_info | |
import numpy as np | |
import os | |
from datetime import datetime | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Initialize Florence model | |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval() | |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True) | |
# Initialize Qwen2-VL-2B model | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval() | |
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
def florence_caption(image): | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task="<MORE_DETAILED_CAPTION>", | |
image_size=(image.width, image.height) | |
) | |
return parsed_answer["<MORE_DETAILED_CAPTION>"] | |
def array_to_image_path(image_array): | |
img = Image.fromarray(np.uint8(image_array)) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
img.save(filename) | |
full_path = os.path.abspath(filename) | |
return full_path | |
def qwen_caption(image): | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(np.uint8(image)) | |
image_path = array_to_image_path(np.array(image)) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image_path, | |
}, | |
{"type": "text", "text": "Describe this image in great detail."}, | |
], | |
} | |
] | |
text = qwen_processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = qwen_processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(device) | |
generated_ids = qwen_model.generate(**inputs, max_new_tokens=256) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = qwen_processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] |