Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,654 Bytes
7e690c7 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e c6243d2 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 2694d70 9d6b28e a3a1971 2694d70 a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 6235880 a3a1971 11c0133 a3a1971 9d6b28e a3a1971 9d6b28e a3a1971 b90ec82 a3a1971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import spaces
import os
import requests
import time
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0
from PIL import Image
import cv2
import numpy as np
from RealESRGAN import RealESRGAN
import random
import math
import gradio as gr
from gradio_imageslider import ImageSlider
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def download_file(url, folder_path, filename):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
print(f"File already exists: {file_path}")
else:
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print(f"File successfully downloaded and saved: {file_path}")
else:
print(f"Error downloading the file. Status code: {response.status_code}")
def download_models():
models = {
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
"UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
"UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
"NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
"NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
"LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
"LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
"CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
"VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
}
for model, (url, folder, filename) in models.items():
download_file(url, folder, filename)
download_models()
def timer_func(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
return result
return wrapper
def get_scheduler(scheduler_name, config):
if scheduler_name == "DDIM":
return DDIMScheduler.from_config(config)
elif scheduler_name == "DPM++ 3M SDE Karras":
return DPMSolverMultistepScheduler.from_config(config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)
elif scheduler_name == "DPM++ 3M Karras":
return DPMSolverMultistepScheduler.from_config(config, algorithm_type="dpmsolver++", use_karras_sigmas=True)
else:
raise ValueError(f"Unknown scheduler: {scheduler_name}")
class LazyLoadPipeline:
def __init__(self):
self.pipe = None
@timer_func
def load(self):
if self.pipe is None:
print("Starting to load the pipeline...")
self.pipe = self.setup_pipeline()
print(f"Moving pipeline to device: {device}")
self.pipe.to(device)
if USE_TORCH_COMPILE:
print("Compiling the model...")
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
@timer_func
def setup_pipeline(self):
print("Setting up the pipeline...")
controlnet = ControlNetModel.from_single_file(
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
)
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
use_safetensors=True,
safety_checker=None
)
vae = AutoencoderKL.from_single_file(
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
torch_dtype=torch.float16
)
pipe.vae = vae
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
pipe.fuse_lora(lora_scale=0.5)
pipe.load_lora_weights("models/Lora/more_details.safetensors")
pipe.fuse_lora(lora_scale=1.)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
return pipe
def set_scheduler(self, scheduler_name):
if self.pipe is not None:
self.pipe.scheduler = get_scheduler(scheduler_name, self.pipe.scheduler.config)
def __call__(self, *args, **kwargs):
return self.pipe(*args, **kwargs)
class LazyRealESRGAN:
def __init__(self, device, scale):
self.device = device
self.scale = scale
self.model = None
def load_model(self):
if self.model is None:
self.model = RealESRGAN(self.device, scale=self.scale)
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
def predict(self, img):
self.load_model()
return self.model.predict(img)
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
@timer_func
def resize_and_upscale(input_image, resolution):
scale = 2 if resolution <= 2048 else 4
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H = int(round(H * k / 64.0)) * 64
W = int(round(W * k / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
if scale == 2:
img = lazy_realesrgan_x2.predict(img)
else:
img = lazy_realesrgan_x4.predict(img)
return img
@timer_func
def create_hdr_effect(original_image, hdr):
if hdr == 0:
return original_image
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
merge_mertens = cv2.createMergeMertens()
hdr_image = merge_mertens.process(images)
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
lazy_pipe = LazyLoadPipeline()
lazy_pipe.load()
@timer_func
def progressive_upscale(input_image, target_resolution, steps=3):
current_image = input_image.convert("RGB")
current_size = max(current_image.size)
for _ in range(steps):
if current_size >= target_resolution:
break
scale_factor = min(2, target_resolution / current_size)
new_size = (int(current_image.width * scale_factor), int(current_image.height * scale_factor))
if scale_factor <= 1.5:
current_image = current_image.resize(new_size, Image.LANCZOS)
else:
current_image = lazy_realesrgan_x2.predict(current_image)
current_size = max(current_image.size)
# Final resize to exact target resolution
if current_size != target_resolution:
aspect_ratio = current_image.width / current_image.height
if current_image.width > current_image.height:
new_size = (target_resolution, int(target_resolution / aspect_ratio))
else:
new_size = (int(target_resolution * aspect_ratio), target_resolution)
current_image = current_image.resize(new_size, Image.LANCZOS)
return current_image
def prepare_image(input_image, resolution, hdr):
upscaled_image = progressive_upscale(input_image, resolution)
return create_hdr_effect(upscaled_image, hdr)
def create_gaussian_weight(tile_size, sigma=0.3):
x = np.linspace(-1, 1, tile_size)
y = np.linspace(-1, 1, tile_size)
xx, yy = np.meshgrid(x, y)
gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
return gaussian_weight
def adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1024):
w, h = image_size
aspect_ratio = w / h
if aspect_ratio > 1:
tile_w = min(w, max_tile_size)
tile_h = min(int(tile_w / aspect_ratio), max_tile_size)
else:
tile_h = min(h, max_tile_size)
tile_w = min(int(tile_h * aspect_ratio), max_tile_size)
return max(tile_w, base_tile_size), max(tile_h, base_tile_size)
def process_tile(tile, num_inference_steps, strength, guidance_scale, controlnet_strength):
prompt = "masterpiece, best quality, highres"
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
options = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"image": tile,
"control_image": tile,
"num_inference_steps": num_inference_steps,
"strength": strength,
"guidance_scale": guidance_scale,
"controlnet_conditioning_scale": float(controlnet_strength),
"generator": torch.Generator(device=device).manual_seed(random.randint(0, 2147483647)),
}
return np.array(lazy_pipe(**options).images[0])
@spaces.GPU
@timer_func
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name):
print("Starting image processing...")
torch.cuda.empty_cache()
lazy_pipe.set_scheduler(scheduler_name)
# Convert input_image to numpy array
input_array = np.array(input_image)
# Prepare the condition image
condition_image = prepare_image(input_image, resolution, hdr)
W, H = condition_image.size
# Adaptive tiling
tile_width, tile_height = adaptive_tile_size((W, H))
# Calculate the number of tiles
overlap = min(64, tile_width // 8, tile_height // 8) # Adaptive overlap
num_tiles_x = math.ceil((W - overlap) / (tile_width - overlap))
num_tiles_y = math.ceil((H - overlap) / (tile_height - overlap))
# Create a blank canvas for the result
result = np.zeros((H, W, 3), dtype=np.float32)
weight_sum = np.zeros((H, W, 1), dtype=np.float32)
# Create gaussian weight
gaussian_weight = create_gaussian_weight(max(tile_width, tile_height))
for i in range(num_tiles_y):
for j in range(num_tiles_x):
# Calculate tile coordinates
left = j * (tile_width - overlap)
top = i * (tile_height - overlap)
right = min(left + tile_width, W)
bottom = min(top + tile_height, H)
# Adjust tile size if it's at the edge
current_tile_size = (bottom - top, right - left)
tile = condition_image.crop((left, top, right, bottom))
tile = tile.resize((tile_width, tile_height))
# Process the tile
result_tile = process_tile(tile, num_inference_steps, strength, guidance_scale, controlnet_strength)
# Apply gaussian weighting
if current_tile_size != (tile_width, tile_height):
result_tile = cv2.resize(result_tile, current_tile_size[::-1])
tile_weight = cv2.resize(gaussian_weight, current_tile_size[::-1])
else:
tile_weight = gaussian_weight[:current_tile_size[0], :current_tile_size[1]]
# Add the tile to the result with gaussian weighting
result[top:bottom, left:right] += result_tile * tile_weight[:, :, np.newaxis]
weight_sum[top:bottom, left:right] += tile_weight[:, :, np.newaxis]
# Normalize the result
final_result = (result / weight_sum).astype(np.uint8)
print("Image processing completed successfully")
return [input_array, final_result]
title = """<h1 align="center">Tile Upscaler V2</h1>
<p align="center">Creative version of Tile Upscaler. The main ideas come from</p>
<p><center>
<a href="https://huggingface.co/spaces/gokaygokay/Tile-Upscaler" target="_blank">[Tile Upscaler]</a>
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[Pau-Lozano]</a>
</center></p>
"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
run_button = gr.Button("Enhance Image")
with gr.Column():
output_slider = ImageSlider(label="Before / After", type="numpy")
with gr.Accordion("Advanced Options", open=False):
resolution = gr.Slider(minimum=128, maximum=2048, value=1536, step=128, label="Resolution")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
guidance_scale = gr.Slider(minimum=0, maximum=20, value=6, step=0.5, label="Guidance Scale")
controlnet_strength = gr.Slider(minimum=0.0, maximum=2.0, value=0.75, step=0.05, label="ControlNet Strength")
scheduler_name = gr.Dropdown(
choices=["DDIM", "DPM++ 3M SDE Karras", "DPM++ 3M Karras"],
value="DDIM",
label="Scheduler"
)
run_button.click(fn=gradio_process_image,
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name],
outputs=output_slider)
gr.Examples(
examples=[
["image1.jpg", 1536, 20, 0.4, 0, 6, 0.75, "DDIM"],
["image2.png", 512, 20, 0.55, 0, 6, 0.6, "DDIM"],
["image3.png", 1024, 20, 0.3, 0, 6, 0.65, "DDIM"]
],
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name],
outputs=output_slider,
fn=gradio_process_image,
cache_examples=True,
)
demo.launch(debug=True, share=True) |