File size: 15,654 Bytes
7e690c7
9d6b28e
 
 
a3a1971
9d6b28e
a3a1971
 
 
 
 
9d6b28e
 
 
a3a1971
9d6b28e
a3a1971
 
 
 
9d6b28e
a3a1971
 
9d6b28e
 
 
a3a1971
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6243d2
 
9d6b28e
 
 
 
 
 
 
 
 
a3a1971
 
 
 
 
 
 
 
 
 
 
9d6b28e
 
 
a3a1971
 
 
 
9d6b28e
a3a1971
9d6b28e
 
a3a1971
9d6b28e
 
a3a1971
9d6b28e
a3a1971
9d6b28e
 
 
 
 
 
 
 
 
a3a1971
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a1971
 
 
9d6b28e
a3a1971
 
9d6b28e
a3a1971
 
 
 
 
9d6b28e
a3a1971
 
 
 
 
 
 
9d6b28e
a3a1971
 
9d6b28e
a3a1971
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6b28e
a3a1971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694d70
9d6b28e
a3a1971
 
 
2694d70
a3a1971
 
 
 
 
 
 
 
 
9d6b28e
a3a1971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6b28e
a3a1971
 
 
9d6b28e
a3a1971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6b28e
a3a1971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6235880
 
a3a1971
11c0133
a3a1971
 
 
 
9d6b28e
a3a1971
 
9d6b28e
a3a1971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90ec82
 
 
 
 
 
 
 
 
 
 
 
a3a1971
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import spaces
import os
import requests
import time

import torch

from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0

from PIL import Image
import cv2
import numpy as np

from RealESRGAN import RealESRGAN

import random
import math

import gradio as gr
from gradio_imageslider import ImageSlider

USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

def download_models():
    models = {
        "MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
        "UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
        "UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
        "NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
        "NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
        "LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
        "LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
        "CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
        "VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
    }

    for model, (url, folder, filename) in models.items():
        download_file(url, folder, filename)

download_models()

def timer_func(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
        return result
    return wrapper

def get_scheduler(scheduler_name, config):
    if scheduler_name == "DDIM":
        return DDIMScheduler.from_config(config)
    elif scheduler_name == "DPM++ 3M SDE Karras":
        return DPMSolverMultistepScheduler.from_config(config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)
    elif scheduler_name == "DPM++ 3M Karras":
        return DPMSolverMultistepScheduler.from_config(config, algorithm_type="dpmsolver++", use_karras_sigmas=True)
    else:
        raise ValueError(f"Unknown scheduler: {scheduler_name}")

class LazyLoadPipeline:
    def __init__(self):
        self.pipe = None

    @timer_func
    def load(self):
        if self.pipe is None:
            print("Starting to load the pipeline...")
            self.pipe = self.setup_pipeline()
            print(f"Moving pipeline to device: {device}")
            self.pipe.to(device)
            if USE_TORCH_COMPILE:
                print("Compiling the model...")
                self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)

    @timer_func
    def setup_pipeline(self):
        print("Setting up the pipeline...")
        controlnet = ControlNetModel.from_single_file(
            "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
        )
        model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
            model_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            use_safetensors=True,
            safety_checker=None
        )
        vae = AutoencoderKL.from_single_file(
            "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
            torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
        pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
        pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
        pipe.fuse_lora(lora_scale=0.5)
        pipe.load_lora_weights("models/Lora/more_details.safetensors")
        pipe.fuse_lora(lora_scale=1.)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
        return pipe

    def set_scheduler(self, scheduler_name):
        if self.pipe is not None:
            self.pipe.scheduler = get_scheduler(scheduler_name, self.pipe.scheduler.config)

    def __call__(self, *args, **kwargs):
        return self.pipe(*args, **kwargs)

class LazyRealESRGAN:
    def __init__(self, device, scale):
        self.device = device
        self.scale = scale
        self.model = None

    def load_model(self):
        if self.model is None:
            self.model = RealESRGAN(self.device, scale=self.scale)
            self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
    def predict(self, img):
        self.load_model()
        return self.model.predict(img)

lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)

@timer_func
def resize_and_upscale(input_image, resolution):
    scale = 2 if resolution <= 2048 else 4
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H = int(round(H * k / 64.0)) * 64
    W = int(round(W * k / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    if scale == 2:
        img = lazy_realesrgan_x2.predict(img)
    else:
        img = lazy_realesrgan_x4.predict(img)
    return img

@timer_func
def create_hdr_effect(original_image, hdr):
    if hdr == 0:
        return original_image
    cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
    factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
              1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
              1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
    images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
    merge_mertens = cv2.createMergeMertens()
    hdr_image = merge_mertens.process(images)
    hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
    return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))

lazy_pipe = LazyLoadPipeline()
lazy_pipe.load()

@timer_func
def progressive_upscale(input_image, target_resolution, steps=3):
    current_image = input_image.convert("RGB")
    current_size = max(current_image.size)
    
    for _ in range(steps):
        if current_size >= target_resolution:
            break
        
        scale_factor = min(2, target_resolution / current_size)
        new_size = (int(current_image.width * scale_factor), int(current_image.height * scale_factor))
        
        if scale_factor <= 1.5:
            current_image = current_image.resize(new_size, Image.LANCZOS)
        else:
            current_image = lazy_realesrgan_x2.predict(current_image)
        
        current_size = max(current_image.size)
    
    # Final resize to exact target resolution
    if current_size != target_resolution:
        aspect_ratio = current_image.width / current_image.height
        if current_image.width > current_image.height:
            new_size = (target_resolution, int(target_resolution / aspect_ratio))
        else:
            new_size = (int(target_resolution * aspect_ratio), target_resolution)
        current_image = current_image.resize(new_size, Image.LANCZOS)
    
    return current_image

def prepare_image(input_image, resolution, hdr):
    upscaled_image = progressive_upscale(input_image, resolution)
    return create_hdr_effect(upscaled_image, hdr)

def create_gaussian_weight(tile_size, sigma=0.3):
    x = np.linspace(-1, 1, tile_size)
    y = np.linspace(-1, 1, tile_size)
    xx, yy = np.meshgrid(x, y)
    gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
    return gaussian_weight

def adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1024):
    w, h = image_size
    aspect_ratio = w / h
    if aspect_ratio > 1:
        tile_w = min(w, max_tile_size)
        tile_h = min(int(tile_w / aspect_ratio), max_tile_size)
    else:
        tile_h = min(h, max_tile_size)
        tile_w = min(int(tile_h * aspect_ratio), max_tile_size)
    return max(tile_w, base_tile_size), max(tile_h, base_tile_size)

def process_tile(tile, num_inference_steps, strength, guidance_scale, controlnet_strength):
    prompt = "masterpiece, best quality, highres"
    negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
    
    options = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "image": tile,
        "control_image": tile,
        "num_inference_steps": num_inference_steps,
        "strength": strength,
        "guidance_scale": guidance_scale,
        "controlnet_conditioning_scale": float(controlnet_strength),
        "generator": torch.Generator(device=device).manual_seed(random.randint(0, 2147483647)),
    }
    
    return np.array(lazy_pipe(**options).images[0])

@spaces.GPU
@timer_func
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name):
    print("Starting image processing...")
    torch.cuda.empty_cache()
    lazy_pipe.set_scheduler(scheduler_name)
    
    # Convert input_image to numpy array
    input_array = np.array(input_image)
    
    # Prepare the condition image
    condition_image = prepare_image(input_image, resolution, hdr)
    W, H = condition_image.size
    
    # Adaptive tiling
    tile_width, tile_height = adaptive_tile_size((W, H))
    
    # Calculate the number of tiles
    overlap = min(64, tile_width // 8, tile_height // 8)  # Adaptive overlap
    num_tiles_x = math.ceil((W - overlap) / (tile_width - overlap))
    num_tiles_y = math.ceil((H - overlap) / (tile_height - overlap))
    
    # Create a blank canvas for the result
    result = np.zeros((H, W, 3), dtype=np.float32)
    weight_sum = np.zeros((H, W, 1), dtype=np.float32)
    
    # Create gaussian weight
    gaussian_weight = create_gaussian_weight(max(tile_width, tile_height))
    
    for i in range(num_tiles_y):
        for j in range(num_tiles_x):
            # Calculate tile coordinates
            left = j * (tile_width - overlap)
            top = i * (tile_height - overlap)
            right = min(left + tile_width, W)
            bottom = min(top + tile_height, H)
            
            # Adjust tile size if it's at the edge
            current_tile_size = (bottom - top, right - left)
            
            tile = condition_image.crop((left, top, right, bottom))
            tile = tile.resize((tile_width, tile_height))
            
            # Process the tile
            result_tile = process_tile(tile, num_inference_steps, strength, guidance_scale, controlnet_strength)
            
            # Apply gaussian weighting
            if current_tile_size != (tile_width, tile_height):
                result_tile = cv2.resize(result_tile, current_tile_size[::-1])
                tile_weight = cv2.resize(gaussian_weight, current_tile_size[::-1])
            else:
                tile_weight = gaussian_weight[:current_tile_size[0], :current_tile_size[1]]
            
            # Add the tile to the result with gaussian weighting
            result[top:bottom, left:right] += result_tile * tile_weight[:, :, np.newaxis]
            weight_sum[top:bottom, left:right] += tile_weight[:, :, np.newaxis]
    
    # Normalize the result
    final_result = (result / weight_sum).astype(np.uint8)
    
    print("Image processing completed successfully")
    
    return [input_array, final_result]

title = """<h1 align="center">Tile Upscaler V2</h1>
<p align="center">Creative version of Tile Upscaler. The main ideas come from</p>
<p><center>
<a href="https://huggingface.co/spaces/gokaygokay/Tile-Upscaler" target="_blank">[Tile Upscaler]</a>
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[Pau-Lozano]</a>
</center></p>
"""

with gr.Blocks() as demo:
    gr.HTML(title)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            run_button = gr.Button("Enhance Image")
        with gr.Column():
            output_slider = ImageSlider(label="Before / After", type="numpy")
    with gr.Accordion("Advanced Options", open=False):
        resolution = gr.Slider(minimum=128, maximum=2048, value=1536, step=128, label="Resolution")
        num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
        strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
        hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        guidance_scale = gr.Slider(minimum=0, maximum=20, value=6, step=0.5, label="Guidance Scale")
        controlnet_strength = gr.Slider(minimum=0.0, maximum=2.0, value=0.75, step=0.05, label="ControlNet Strength")
        scheduler_name = gr.Dropdown(
            choices=["DDIM", "DPM++ 3M SDE Karras", "DPM++ 3M Karras"],
            value="DDIM",
            label="Scheduler"
        )

    run_button.click(fn=gradio_process_image, 
                     inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name],
                     outputs=output_slider)

    gr.Examples(
        examples=[
            ["image1.jpg", 1536, 20, 0.4, 0, 6, 0.75, "DDIM"],
            ["image2.png", 512, 20, 0.55, 0, 6, 0.6, "DDIM"],
            ["image3.png", 1024, 20, 0.3, 0, 6, 0.65, "DDIM"]
        ],
        inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name],
        outputs=output_slider,
        fn=gradio_process_image,
        cache_examples=True,
    )

demo.launch(debug=True, share=True)