Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,047 Bytes
7e690c7 9d6b28e 5646d18 9d6b28e c6243d2 9d6b28e 5646d18 9d6b28e 17135c5 9d6b28e 17135c5 9d6b28e 17135c5 9d6b28e 17135c5 9d6b28e 17135c5 9d6b28e 17135c5 9d6b28e 17135c5 9d6b28e a740344 9d6b28e 0855740 9d6b28e 0855740 9d6b28e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import spaces
import os
import requests
import time
import io
import torch
from PIL import Image
import cv2
import numpy as np
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0
from RealESRGAN import RealESRGAN
import gradio as gr
import subprocess
from tqdm import tqdm
import shutil
import uuid
import json
import threading
# Constants
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
# Ensure CUDA is available
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available. This script requires a CUDA-capable GPU.")
device = torch.device("cuda")
print(f"Using device: {device}")
# Replace the global abort_status with an Event
abort_event = threading.Event()
css = """
.gradio-container {
max-width: 100% !important;
padding: 20px !important;
}
#component-0 {
height: auto !important;
overflow: visible !important;
}
"""
def abort_job():
if abort_event.is_set():
return "Job is already being aborted."
abort_event.set()
return "Aborting job... Processing will stop after the current frame."
def check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def download_file(url, folder_path, filename):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
print(f"File already exists: {file_path}")
else:
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print(f"File successfully downloaded and saved: {file_path}")
else:
print(f"Error downloading the file. Status code: {response.status_code}")
def download_models():
models = {
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
"UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
"UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
"NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
"NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
"LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
"LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
"CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
"VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
}
for model, (url, folder, filename) in models.items():
download_file(url, folder, filename)
download_models()
def timer_func(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
return result
return wrapper
class ModelManager:
def __init__(self):
self.pipe = None
self.realesrgan_x2 = None
self.realesrgan_x4 = None
def load_models(self, progress=gr.Progress()):
if self.pipe is None:
progress(0, desc="Loading Stable Diffusion pipeline...")
self.pipe = self.setup_pipeline()
self.pipe.to(device)
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
self.pipe.vae.set_attn_processor(AttnProcessor2_0())
if USE_TORCH_COMPILE:
progress(0.5, desc="Compiling the model...")
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
if self.realesrgan_x2 is None:
progress(0.7, desc="Loading RealESRGAN x2 model...")
self.realesrgan_x2 = RealESRGAN(device, scale=2)
self.realesrgan_x2.load_weights('models/upscalers/RealESRGAN_x2.pth', download=False)
if self.realesrgan_x4 is None:
progress(0.9, desc="Loading RealESRGAN x4 model...")
self.realesrgan_x4 = RealESRGAN(device, scale=4)
self.realesrgan_x4.load_weights('models/upscalers/RealESRGAN_x4.pth', download=False)
progress(1.0, desc="All models loaded successfully")
def setup_pipeline(self):
controlnet = ControlNetModel.from_single_file(
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
)
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
use_safetensors=True,
safety_checker=None
)
vae = AutoencoderKL.from_single_file(
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
torch_dtype=torch.float16
)
pipe.vae = vae
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
pipe.fuse_lora(lora_scale=0.5)
pipe.load_lora_weights("models/Lora/more_details.safetensors")
pipe.fuse_lora(lora_scale=1.)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
return pipe
@timer_func
def process_image_batch(self, input_images, resolution, num_inference_steps, strength, hdr, guidance_scale):
condition_images = [self.prepare_image(img, resolution, hdr) for img in input_images]
prompt = "masterpiece, best quality, highres"
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
options = {
"prompt": [prompt] * len(input_images),
"negative_prompt": [negative_prompt] * len(input_images),
"image": condition_images,
"control_image": condition_images,
"width": condition_images[0].size[0],
"height": condition_images[0].size[1],
"strength": strength,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": torch.Generator(device=device).manual_seed(0),
}
print("Running inference on batch...")
results = self.pipe(**options).images
print("Batch processing completed successfully")
return results
def prepare_image(self, input_image, resolution, hdr):
condition_image = self.resize_and_upscale(input_image, resolution)
condition_image = self.create_hdr_effect(condition_image, hdr)
return condition_image
@timer_func
def resize_and_upscale(self, input_image, resolution):
scale = 2 if resolution <= 2048 else 4
if isinstance(input_image, str):
input_image = Image.open(input_image).convert("RGB")
elif isinstance(input_image, io.IOBase):
input_image = Image.open(input_image).convert("RGB")
elif isinstance(input_image, Image.Image):
input_image = input_image.convert("RGB")
elif isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image).convert("RGB")
else:
raise ValueError(f"Unsupported input type for input_image: {type(input_image)}")
W, H = input_image.size
k = float(resolution) / min(H, W)
H = int(round(H * k / 64.0)) * 64
W = int(round(W * k / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
if scale == 2:
img = self.realesrgan_x2.predict(img)
else:
img = self.realesrgan_x4.predict(img)
return img
@timer_func
def create_hdr_effect(self, original_image, hdr):
if hdr == 0:
return original_image
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
merge_mertens = cv2.createMergeMertens()
hdr_image = merge_mertens.process(images)
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
hdr_result = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
return hdr_result
model_manager = ModelManager()
def extract_frames(video_path, output_folder):
os.makedirs(output_folder, exist_ok=True)
command = [
'ffmpeg',
'-i', video_path,
'-vf', 'fps=30',
f'{output_folder}/frame_%06d.png'
]
subprocess.run(command, check=True)
def frames_to_video(input_folder, output_path, fps, original_video_path):
# First, create the video from frames without audio
temp_output_path = output_path + "_temp.mp4"
video_command = [
'ffmpeg',
'-framerate', str(fps),
'-i', f'{input_folder}/frame_%06d.png',
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
temp_output_path
]
subprocess.run(video_command, check=True)
# Then, copy the audio from the original video and add it to the new video
final_command = [
'ffmpeg',
'-i', temp_output_path,
'-i', original_video_path,
'-c:v', 'copy',
'-c:a', 'aac',
'-map', '0:v:0',
'-map', '1:a:0?',
'-shortest',
output_path
]
subprocess.run(final_command, check=True)
# Remove the temporary file
os.remove(temp_output_path)
@timer_func
def process_video(input_video, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames=None, frame_interval=1, preserve_frames=False, progress=gr.Progress()):
abort_event.clear() # Clear the abort flag at the start of a new job
print("Starting video processing...")
model_manager.load_models(progress) # Ensure models are loaded
# Create a new job folder
job_id = str(uuid.uuid4())
job_folder = os.path.join("jobs", job_id)
os.makedirs(job_folder, exist_ok=True)
# Save job config
config = {
"resolution": resolution,
"num_inference_steps": num_inference_steps,
"strength": strength,
"hdr": hdr,
"guidance_scale": guidance_scale,
"max_frames": max_frames,
"frame_interval": frame_interval,
"preserve_frames": preserve_frames
}
with open(os.path.join(job_folder, "config.json"), "w") as f:
json.dump(config, f)
# If input_video is a file object or has a 'name' attribute, use its name
if isinstance(input_video, io.IOBase) or hasattr(input_video, 'name'):
input_video = input_video.name
# Set up folders
frames_folder = os.path.join(job_folder, "video_frames")
processed_frames_folder = os.path.join(job_folder, "processed_frames")
os.makedirs(frames_folder, exist_ok=True)
os.makedirs(processed_frames_folder, exist_ok=True)
# Extract frames
progress(0.1, desc="Extracting frames...")
extract_frames(input_video, frames_folder)
# Process selected frames
frame_files = sorted(os.listdir(frames_folder))
total_frames = len(frame_files)
frames_to_process = min(max_frames, total_frames) if max_frames else total_frames
try:
progress(0.2, desc="Processing frames...")
batch_size = 8
for i in tqdm(range(0, frames_to_process, batch_size), desc="Processing batches"):
if abort_event.is_set():
print("Job aborted. Stopping processing of new frames.")
break
batch_frames = frame_files[i:min(i+batch_size, frames_to_process)]
input_images = [Image.open(os.path.join(frames_folder, frame)) for frame in batch_frames]
processed_images = model_manager.process_image_batch(input_images, resolution, num_inference_steps, strength, hdr, guidance_scale)
for frame_file, processed_image in zip(batch_frames, processed_images):
output_frame_path = os.path.join(processed_frames_folder, frame_file)
if not preserve_frames or not os.path.exists(output_frame_path):
processed_image.save(output_frame_path)
progress((0.2 + 0.7 * (i + batch_size) / frames_to_process), desc=f"Processed batch {i//batch_size + 1}/{(frames_to_process-1)//batch_size + 1}")
# Always attempt to reassemble video
progress(0.9, desc="Reassembling video...")
input_filename = os.path.splitext(os.path.basename(input_video))[0]
output_video = os.path.join(job_folder, f"{input_filename}_upscaled.mp4")
frames_to_video(processed_frames_folder, output_video, 30, input_video)
if abort_event.is_set():
progress(1.0, desc="Video processing aborted, but partial result saved")
print("Video processing aborted, but partial result saved")
else:
progress(1.0, desc="Video processing completed successfully")
print("Video processing completed successfully")
return output_video
except Exception as e:
print(f"An error occurred during processing: {str(e)}")
progress(1.0, desc=f"Error: {str(e)}")
return None
@spaces.GPU(duration=160)
def gradio_process_media(input_media, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, progress=gr.Progress()):
abort_event.clear() # Clear the abort flag at the start of a new job
if input_media is None:
return None, "No input media provided."
print(f"Input media type: {type(input_media)}")
# Get the file path
if isinstance(input_media, str):
file_path = input_media
elif isinstance(input_media, io.IOBase):
file_path = input_media.name
elif hasattr(input_media, 'name'):
file_path = input_media.name
else:
raise ValueError(f"Unsupported input type: {type(input_media)}")
print(f"File path: {file_path}")
# Ensure models are loaded
model_manager.load_models(progress)
# Check if the file is a video
video_extensions = ('.mp4', '.avi', '.mov', '.mkv')
if file_path.lower().endswith(video_extensions):
print("Processing video...")
result = process_video(file_path, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, progress)
if result:
return result, "Video processing completed successfully."
else:
return None, "Error occurred during video processing."
else:
print("Processing image...")
result = model_manager.process_image(file_path, resolution, num_inference_steps, strength, hdr, guidance_scale)
if result:
# Save the processed image
output_path = os.path.join("processed_images", f"processed_{os.path.basename(file_path)}")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
result.save(output_path)
return output_path, "Image processing completed successfully."
else:
return None, "Error occurred during image processing."
title = """
<h1 align="center">Simple Slow Video Upscaler</h1>
<p align="center">
<a href="https://twitter.com/hrishioa" target="_blank">[Hrishi]</a>
<a href="https://huggingface.co/spaces/gokaygokay/Tile-Upscaler" target="_blank">[gokaygokay/Tile-Upscaler]</a>
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[BatouResearch]</a>
<a href="https://github.com/hrishioa/SimpleSlowVideoUpscaler" target="_blank">[Hrishi GitHub]</a>
</p>
"""
# Update the Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Default(primary_hue="blue")) as iface:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=2):
input_media = gr.File(label="Input Media (Image or Video)")
resolution = gr.Slider(256, 2048, 512, step=256, label="Resolution")
num_inference_steps = gr.Slider(1, 50, 10, step=1, label="Number of Inference Steps")
strength = gr.Slider(0, 1, 0.3, step=0.01, label="Strength")
hdr = gr.Slider(0, 1, 0, step=0.1, label="HDR Effect")
guidance_scale = gr.Slider(0, 20, 5, step=0.5, label="Guidance Scale")
max_frames = gr.Number(label="Max Frames to Process (leave empty for full video)", precision=0)
frame_interval = gr.Slider(1, 30, 1, step=1, label="Frame Interval (process every nth frame)")
preserve_frames = gr.Checkbox(label="Preserve Existing Processed Frames", value=True)
with gr.Column(scale=1):
submit_button = gr.Button("Process Media")
abort_button = gr.Button("Abort Job")
output = gr.File(label="Processed Media")
status = gr.Markdown("Ready to process media.")
submit_button.click(
gradio_process_media,
inputs=[input_media, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames],
outputs=[output, status]
)
abort_button.click(abort_job, inputs=[], outputs=status)
# Launch the Gradio app
iface.launch() |