import spaces import os import requests import time import io import torch from PIL import Image import cv2 import numpy as np from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler from diffusers.models import AutoencoderKL from diffusers.models.attention_processor import AttnProcessor2_0 from RealESRGAN import RealESRGAN import gradio as gr import subprocess from tqdm import tqdm import shutil import uuid import json import threading # Constants USE_TORCH_COMPILE = False ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" # Ensure CUDA is available if not torch.cuda.is_available(): raise RuntimeError("CUDA is not available. This script requires a CUDA-capable GPU.") device = torch.device("cuda") print(f"Using device: {device}") # Replace the global abort_status with an Event abort_event = threading.Event() css = """ .gradio-container { max-width: 100% !important; padding: 20px !important; } #component-0 { height: auto !important; overflow: visible !important; } """ def abort_job(): if abort_event.is_set(): return "Job is already being aborted." abort_event.set() return "Aborting job... Processing will stop after the current frame." def check_ffmpeg(): try: subprocess.run(["ffmpeg", "-version"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) return True except (subprocess.CalledProcessError, FileNotFoundError): return False def download_file(url, folder_path, filename): if not os.path.exists(folder_path): os.makedirs(folder_path) file_path = os.path.join(folder_path, filename) if os.path.isfile(file_path): print(f"File already exists: {file_path}") else: response = requests.get(url, stream=True) if response.status_code == 200: with open(file_path, 'wb') as file: for chunk in response.iter_content(chunk_size=1024): file.write(chunk) print(f"File successfully downloaded and saved: {file_path}") else: print(f"Error downloading the file. Status code: {response.status_code}") def download_models(): models = { "MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"), "UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"), "UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"), "NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"), "NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"), "LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"), "LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"), "CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"), "VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"), } for model, (url, folder, filename) in models.items(): download_file(url, folder, filename) download_models() def timer_func(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() print(f"{func.__name__} took {end_time - start_time:.2f} seconds") return result return wrapper class ModelManager: def __init__(self): self.pipe = None self.realesrgan_x2 = None self.realesrgan_x4 = None def load_models(self): if self.pipe is None: self.pipe = self.setup_pipeline() self.pipe.to(device) self.pipe.unet.set_attn_processor(AttnProcessor2_0()) self.pipe.vae.set_attn_processor(AttnProcessor2_0()) if USE_TORCH_COMPILE: progress(0.5, desc="Compiling the model...") self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True) if self.realesrgan_x2 is None: self.realesrgan_x2 = RealESRGAN(device, scale=2) self.realesrgan_x2.load_weights('models/upscalers/RealESRGAN_x2.pth', download=False) if self.realesrgan_x4 is None: self.realesrgan_x4 = RealESRGAN(device, scale=4) self.realesrgan_x4.load_weights('models/upscalers/RealESRGAN_x4.pth', download=False) def setup_pipeline(self): controlnet = ControlNetModel.from_single_file( "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16 ) model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors" pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file( model_path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None ) vae = AutoencoderKL.from_single_file( "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors", torch_dtype=torch.float16 ) pipe.vae = vae pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt") pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt") pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors") pipe.fuse_lora(lora_scale=0.5) pipe.load_lora_weights("models/Lora/more_details.safetensors") pipe.fuse_lora(lora_scale=1.) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4) return pipe @timer_func def process_image_batch(self, input_images, resolution, num_inference_steps, strength, hdr, guidance_scale): condition_images = [self.prepare_image(img, resolution, hdr) for img in input_images] prompt = "masterpiece, best quality, highres" negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg" options = { "prompt": [prompt] * len(input_images), "negative_prompt": [negative_prompt] * len(input_images), "image": condition_images, "control_image": condition_images, "width": condition_images[0].size[0], "height": condition_images[0].size[1], "strength": strength, "num_inference_steps": num_inference_steps, "guidance_scale": guidance_scale, "generator": torch.Generator(device=device).manual_seed(0), } print("Running inference on batch...") results = self.pipe(**options).images print("Batch processing completed successfully") return results def prepare_image(self, input_image, resolution, hdr): condition_image = self.resize_and_upscale(input_image, resolution) condition_image = self.create_hdr_effect(condition_image, hdr) return condition_image @timer_func def resize_and_upscale(self, input_image, resolution): scale = 2 if resolution <= 2048 else 4 if isinstance(input_image, str): input_image = Image.open(input_image).convert("RGB") elif isinstance(input_image, io.IOBase): input_image = Image.open(input_image).convert("RGB") elif isinstance(input_image, Image.Image): input_image = input_image.convert("RGB") elif isinstance(input_image, np.ndarray): input_image = Image.fromarray(input_image).convert("RGB") else: raise ValueError(f"Unsupported input type for input_image: {type(input_image)}") W, H = input_image.size k = float(resolution) / min(H, W) H = int(round(H * k / 64.0)) * 64 W = int(round(W * k / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) if scale == 2: img = self.realesrgan_x2.predict(img) else: img = self.realesrgan_x4.predict(img) return img @timer_func def create_hdr_effect(self, original_image, hdr): if hdr == 0: return original_image cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR) factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr, 1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr, 1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr] images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors] merge_mertens = cv2.createMergeMertens() hdr_image = merge_mertens.process(images) hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8') hdr_result = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB)) return hdr_result model_manager = ModelManager() model_manager.load_models() # Ensure models are loaded def extract_frames(video_path, output_folder): os.makedirs(output_folder, exist_ok=True) command = [ 'ffmpeg', '-i', video_path, '-vf', 'fps=30', f'{output_folder}/frame_%06d.png' ] subprocess.run(command, check=True) def frames_to_video(input_folder, output_path, fps, original_video_path): # First, create the video from frames without audio temp_output_path = output_path + "_temp.mp4" video_command = [ 'ffmpeg', '-framerate', str(fps), '-i', f'{input_folder}/frame_%06d.png', '-c:v', 'libx264', '-pix_fmt', 'yuv420p', temp_output_path ] subprocess.run(video_command, check=True) # Then, copy the audio from the original video and add it to the new video final_command = [ 'ffmpeg', '-i', temp_output_path, '-i', original_video_path, '-c:v', 'copy', '-c:a', 'aac', '-map', '0:v:0', '-map', '1:a:0?', '-shortest', output_path ] subprocess.run(final_command, check=True) # Remove the temporary file os.remove(temp_output_path) @timer_func def process_video(input_video, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames=None, frame_interval=1, preserve_frames=False, batch_size=8, progress=gr.Progress()): abort_event.clear() # Clear the abort flag at the start of a new job print("Starting video processing...") # Create a new job folder job_id = str(uuid.uuid4()) job_folder = os.path.join("jobs", job_id) os.makedirs(job_folder, exist_ok=True) # Save job config config = { "resolution": resolution, "num_inference_steps": num_inference_steps, "strength": strength, "hdr": hdr, "guidance_scale": guidance_scale, "max_frames": max_frames, "frame_interval": frame_interval, "preserve_frames": preserve_frames, "batch_size": batch_size } with open(os.path.join(job_folder, "config.json"), "w") as f: json.dump(config, f) # If input_video is a file object or has a 'name' attribute, use its name if isinstance(input_video, io.IOBase) or hasattr(input_video, 'name'): input_video = input_video.name # Set up folders frames_folder = os.path.join(job_folder, "video_frames") processed_frames_folder = os.path.join(job_folder, "processed_frames") os.makedirs(frames_folder, exist_ok=True) os.makedirs(processed_frames_folder, exist_ok=True) # Extract frames progress(0.1, desc="Extracting frames...") extract_frames(input_video, frames_folder) # Process selected frames frame_files = sorted(os.listdir(frames_folder)) total_frames = len(frame_files) frames_to_process = min(max_frames, total_frames) if max_frames else total_frames try: progress(0.2, desc="Processing frames...") for i in tqdm(range(0, frames_to_process, batch_size), desc="Processing batches"): if abort_event.is_set(): print("Job aborted. Stopping processing of new frames.") break batch_frames = frame_files[i:min(i+batch_size, frames_to_process)] input_images = [Image.open(os.path.join(frames_folder, frame)) for frame in batch_frames] processed_images = model_manager.process_image_batch(input_images, resolution, num_inference_steps, strength, hdr, guidance_scale) for frame_file, processed_image in zip(batch_frames, processed_images): output_frame_path = os.path.join(processed_frames_folder, frame_file) if not preserve_frames or not os.path.exists(output_frame_path): processed_image.save(output_frame_path) progress((0.2 + 0.7 * (i + batch_size) / frames_to_process), desc=f"Processed batch {i//batch_size + 1}/{(frames_to_process-1)//batch_size + 1}") # Always attempt to reassemble video progress(0.9, desc="Reassembling video...") input_filename = os.path.splitext(os.path.basename(input_video))[0] output_video = os.path.join(job_folder, f"{input_filename}_upscaled.mp4") frames_to_video(processed_frames_folder, output_video, 30, input_video) if abort_event.is_set(): progress(1.0, desc="Video processing aborted, but partial result saved") print("Video processing aborted, but partial result saved") else: progress(1.0, desc="Video processing completed successfully") print("Video processing completed successfully") return output_video except Exception as e: print(f"An error occurred during processing: {str(e)}") progress(1.0, desc=f"Error: {str(e)}") return None @spaces.GPU(duration=240) def gradio_process_media(input_media, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, batch_size, progress=gr.Progress()): abort_event.clear() # Clear the abort flag at the start of a new job if input_media is None: return None, "No input media provided." print(f"Input media type: {type(input_media)}") # Get the file path if isinstance(input_media, str): file_path = input_media elif isinstance(input_media, io.IOBase): file_path = input_media.name elif hasattr(input_media, 'name'): file_path = input_media.name else: raise ValueError(f"Unsupported input type: {type(input_media)}") print(f"File path: {file_path}") # Ensure models are loaded model_manager.load_models(progress) # Check if the file is a video video_extensions = ('.mp4', '.avi', '.mov', '.mkv') if file_path.lower().endswith(video_extensions): print("Processing video...") result = process_video(file_path, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, batch_size, progress) if result: return result, "Video processing completed successfully." else: return None, "Error occurred during video processing." else: print("Processing image...") result = model_manager.process_image(file_path, resolution, num_inference_steps, strength, hdr, guidance_scale) if result: # Save the processed image output_path = os.path.join("processed_images", f"processed_{os.path.basename(file_path)}") os.makedirs(os.path.dirname(output_path), exist_ok=True) result.save(output_path) return output_path, "Image processing completed successfully." else: return None, "Error occurred during image processing." title = """

Simple Slow Video Upscaler

Currently takes too long :( Please try 1-2 seconds videos only.

[Hrishi] [gokaygokay/Tile-Upscaler] [philz1337x] [BatouResearch] [Hrishi GitHub]

""" # Update the Gradio interface with gr.Blocks(css=css, theme=gr.themes.Default(primary_hue="blue")) as iface: gr.HTML(title) with gr.Row(): with gr.Column(scale=2): input_media = gr.File(label="Input Media (Image or Video)") resolution = gr.Slider(256, 2048, 512, step=256, label="Resolution") num_inference_steps = gr.Slider(1, 50, 20, step=1, label="Number of Inference Steps") strength = gr.Slider(0, 1, 0.05, step=0.01, label="Strength") hdr = gr.Slider(0, 1, 0, step=0.1, label="HDR Effect") guidance_scale = gr.Slider(0, 20, 5, step=0.5, label="Guidance Scale") max_frames = gr.Number(label="Max Frames to Process (leave empty for full video)", precision=0) frame_interval = gr.Slider(1, 30, 1, step=1, label="Frame Interval (process every nth frame)") preserve_frames = gr.Checkbox(label="Preserve Existing Processed Frames", value=True) batch_size = gr.Slider(1, 16, 8, step=1, label="Batch Size") with gr.Column(scale=1): submit_button = gr.Button("Process Media") abort_button = gr.Button("Abort Job") output = gr.File(label="Processed Media") status = gr.Markdown("Ready to process media.") submit_button.click( gradio_process_media, inputs=[input_media, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, batch_size], outputs=[output, status] ) abort_button.click(abort_job, inputs=[], outputs=status) # Launch the Gradio app iface.launch()