Spaces:
Runtime error
Runtime error
testing
Browse files- app.py +7 -3
- chatbot.py +15 -15
app.py
CHANGED
@@ -13,19 +13,23 @@ bot = commands.Bot("", intents=discord.Intents.all())
|
|
13 |
|
14 |
# model_pipe = pickle.load(open('pipe.pkl', 'rb'))
|
15 |
# this is the dtype used for trivial operations, such as vector->vector operations and is the dtype that will determine the accuracy of the model
|
16 |
-
runtimedtype = torch.
|
17 |
|
18 |
# this is the dtype used for matrix-vector operations, and is the dtype that will determine the performance and memory usage of the model
|
19 |
dtype = torch.bfloat16 # torch.float32, torch.float64, torch.bfloat16
|
20 |
|
21 |
-
useGPU =
|
22 |
|
23 |
|
24 |
@bot.event
|
25 |
async def on_ready():
|
26 |
print(f'We have logged in as {bot.user}')
|
27 |
global model
|
28 |
-
model = RWKV("RWKV-4-Pile-3B-Instruct-test2-20230209.pth",
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
@bot.listen('on_message')
|
|
|
13 |
|
14 |
# model_pipe = pickle.load(open('pipe.pkl', 'rb'))
|
15 |
# this is the dtype used for trivial operations, such as vector->vector operations and is the dtype that will determine the accuracy of the model
|
16 |
+
runtimedtype = torch.float16 # torch.float64, torch.bfloat16
|
17 |
|
18 |
# this is the dtype used for matrix-vector operations, and is the dtype that will determine the performance and memory usage of the model
|
19 |
dtype = torch.bfloat16 # torch.float32, torch.float64, torch.bfloat16
|
20 |
|
21 |
+
useGPU = torch.cuda.is_available() # False
|
22 |
|
23 |
|
24 |
@bot.event
|
25 |
async def on_ready():
|
26 |
print(f'We have logged in as {bot.user}')
|
27 |
global model
|
28 |
+
model = RWKV("https://huggingface.co/BlinkDL/rwkv-4-pile-3b/blob/main/RWKV-4-Pile-3B-Instruct-test2-20230209.pth",
|
29 |
+
mode=TORCH,
|
30 |
+
useGPU=useGPU,
|
31 |
+
runtimedtype=runtimedtype,
|
32 |
+
dtype=dtype)
|
33 |
|
34 |
|
35 |
@bot.listen('on_message')
|
chatbot.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
-
from rwkvstic.load import RWKV
|
2 |
-
from rwkvstic.agnostic.backends import TORCH
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
|
6 |
-
os.environ["RWKV_JIT_ON"] = '1'
|
7 |
-
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
8 |
-
# this is the dtype used for trivial operations, such as vector->vector operations and is the dtype that will determine the accuracy of the model
|
9 |
-
runtimedtype = torch.float32 # torch.float64, torch.bfloat16
|
10 |
|
11 |
-
# this is the dtype used for matrix-vector operations, and is the dtype that will determine the performance and memory usage of the model
|
12 |
-
dtype = torch.bfloat16 # torch.float32, torch.float64, torch.bfloat16
|
13 |
|
14 |
-
useGPU = False # False
|
15 |
|
16 |
-
model = RWKV("RWKV-4-Pile-3B-Instruct-test2-20230209.pth", mode=TORCH, useGPU=useGPU, runtimedtype=runtimedtype, dtype=dtype)
|
17 |
|
18 |
-
model.loadContext(newctx=f"Q: How many hours are there in a day?\n\nA:")
|
19 |
-
output = model.forward(number=100)["output"]
|
20 |
|
21 |
-
print(output)
|
|
|
1 |
+
# from rwkvstic.load import RWKV
|
2 |
+
# from rwkvstic.agnostic.backends import TORCH
|
3 |
+
# import torch
|
4 |
+
# import os
|
5 |
|
6 |
+
# os.environ["RWKV_JIT_ON"] = '1'
|
7 |
+
# os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
8 |
+
# # this is the dtype used for trivial operations, such as vector->vector operations and is the dtype that will determine the accuracy of the model
|
9 |
+
# runtimedtype = torch.float32 # torch.float64, torch.bfloat16
|
10 |
|
11 |
+
# # this is the dtype used for matrix-vector operations, and is the dtype that will determine the performance and memory usage of the model
|
12 |
+
# dtype = torch.bfloat16 # torch.float32, torch.float64, torch.bfloat16
|
13 |
|
14 |
+
# useGPU = False # False
|
15 |
|
16 |
+
# model = RWKV("RWKV-4-Pile-3B-Instruct-test2-20230209.pth", mode=TORCH, useGPU=useGPU, runtimedtype=runtimedtype, dtype=dtype)
|
17 |
|
18 |
+
# model.loadContext(newctx=f"Q: How many hours are there in a day?\n\nA:")
|
19 |
+
# output = model.forward(number=100)["output"]
|
20 |
|
21 |
+
# print(output)
|