Upload 13 files
Browse files- .gitattributes +8 -0
- README.md +3 -5
- app.py +466 -0
- examples/bubul.jpg +3 -0
- examples/hornbill.jpg +3 -0
- examples/lizard.jpg +3 -0
- examples/monkey.jpg +3 -0
- examples/otter.jpg +3 -0
- image.jpg +0 -0
- photo_lookup.json +3 -0
- requirements.txt +6 -0
- species_lookup.json +3 -0
- txt_emb_species.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/bubul.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/hornbill.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/lizard.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/monkey.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
examples/otter.jpg filter=lfs diff=lfs merge=lfs -text
|
41 |
+
photo_lookup.json filter=lfs diff=lfs merge=lfs -text
|
42 |
+
species_lookup.json filter=lfs diff=lfs merge=lfs -text
|
43 |
+
txt_emb_species.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
---
|
2 |
title: Biome
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.8.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Multimodal search & retrieval-based biodiversity recognition
|
12 |
-
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Biome
|
3 |
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.8.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Multimodal search & retrieval-based biodiversity recognition
|
12 |
+
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import heapq
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
import faiss
|
7 |
+
import requests
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from open_clip import create_model, get_tokenizer
|
13 |
+
from torchvision import transforms
|
14 |
+
from PIL import Image
|
15 |
+
import io
|
16 |
+
from pathlib import Path
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
|
19 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
20 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
21 |
+
logger = logging.getLogger()
|
22 |
+
|
23 |
+
hf_token = os.getenv("HF_TOKEN")
|
24 |
+
|
25 |
+
model_str = "hf-hub:imageomics/bioclip"
|
26 |
+
tokenizer_str = "ViT-B-16"
|
27 |
+
|
28 |
+
txt_emb_npy = hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='txt_emb_species.npy', repo_type="dataset")
|
29 |
+
txt_names_json = "txt_emb_species.json"
|
30 |
+
|
31 |
+
min_prob = 1e-9
|
32 |
+
k = 5
|
33 |
+
|
34 |
+
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
35 |
+
|
36 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
37 |
+
|
38 |
+
preprocess_img = transforms.Compose(
|
39 |
+
[
|
40 |
+
transforms.ToTensor(),
|
41 |
+
transforms.Resize((224, 224), antialias=True),
|
42 |
+
transforms.Normalize(
|
43 |
+
mean=(0.48145466, 0.4578275, 0.40821073),
|
44 |
+
std=(0.26862954, 0.26130258, 0.27577711),
|
45 |
+
),
|
46 |
+
]
|
47 |
+
)
|
48 |
+
|
49 |
+
MIN_PROB = 1e-9
|
50 |
+
TOP_K_PREDICTIONS = 5
|
51 |
+
TOP_K_CANDIDATES = 250
|
52 |
+
TOP_N_SIMILAR = 22
|
53 |
+
SIMILARITY_BOOST = 0.2
|
54 |
+
VOTE_THRESHOLD = 3
|
55 |
+
SIMILARITY_THRESHOLD = 0.99
|
56 |
+
|
57 |
+
# Add paths for RAG
|
58 |
+
PHOTO_LOOKUP_PATH = f"./photo_lookup.json"
|
59 |
+
SPECIES_LOOKUP_PATH = f"./species_lookup.json"
|
60 |
+
|
61 |
+
theme = gr.themes.Base(
|
62 |
+
primary_hue=gr.themes.colors.teal,
|
63 |
+
secondary_hue=gr.themes.colors.blue,
|
64 |
+
neutral_hue=gr.themes.colors.gray,
|
65 |
+
text_size=gr.themes.sizes.text_lg,
|
66 |
+
).set(
|
67 |
+
button_primary_background_fill="#114A56",
|
68 |
+
button_primary_background_fill_hover="#114A56",
|
69 |
+
block_title_text_weight="600",
|
70 |
+
block_label_text_weight="600",
|
71 |
+
block_label_text_size="*text_md",
|
72 |
+
)
|
73 |
+
|
74 |
+
EXAMPLES_DIR = Path("examples")
|
75 |
+
example_images = sorted(str(p) for p in EXAMPLES_DIR.glob("*.jpg"))
|
76 |
+
|
77 |
+
def indexed(lst, indices):
|
78 |
+
return [lst[i] for i in indices]
|
79 |
+
|
80 |
+
def format_name(taxon, common):
|
81 |
+
taxon = " ".join(taxon)
|
82 |
+
if not common:
|
83 |
+
return taxon
|
84 |
+
return f"{taxon} ({common})"
|
85 |
+
|
86 |
+
def combine_duplicate_predictions(predictions):
|
87 |
+
"""Combine predictions where one name is contained within another."""
|
88 |
+
combined = {}
|
89 |
+
used = set()
|
90 |
+
|
91 |
+
# Sort by length of name (longer names first) and probability
|
92 |
+
items = sorted(predictions.items(), key=lambda x: (-len(x[0]), -x[1]))
|
93 |
+
|
94 |
+
for name1, prob1 in items:
|
95 |
+
if name1 in used:
|
96 |
+
continue
|
97 |
+
|
98 |
+
total_prob = prob1
|
99 |
+
used.add(name1)
|
100 |
+
|
101 |
+
# Check remaining predictions
|
102 |
+
for name2, prob2 in predictions.items():
|
103 |
+
if name2 in used:
|
104 |
+
continue
|
105 |
+
|
106 |
+
# Convert to lowercase for comparison
|
107 |
+
name1_lower = name1.lower()
|
108 |
+
name2_lower = name2.lower()
|
109 |
+
|
110 |
+
# Check if one name contains the other
|
111 |
+
if name1_lower in name2_lower or name2_lower in name1_lower:
|
112 |
+
total_prob += prob2
|
113 |
+
used.add(name2)
|
114 |
+
|
115 |
+
combined[name1] = total_prob
|
116 |
+
|
117 |
+
# Normalize probabilities
|
118 |
+
total = sum(combined.values())
|
119 |
+
return {k: v/total for k, v in combined.items()}
|
120 |
+
|
121 |
+
@torch.no_grad()
|
122 |
+
def open_domain_classification(img, rank: int, return_all=False):
|
123 |
+
"""
|
124 |
+
Predicts from the entire tree of life using RAG approach.
|
125 |
+
"""
|
126 |
+
logger.info(f"Starting open domain classification for rank: {rank}")
|
127 |
+
img = preprocess_img(img).to(device)
|
128 |
+
img_features = model.encode_image(img.unsqueeze(0))
|
129 |
+
img_features = F.normalize(img_features, dim=-1)
|
130 |
+
|
131 |
+
# Get zero-shot predictions
|
132 |
+
logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
|
133 |
+
probs = F.softmax(logits, dim=0)
|
134 |
+
|
135 |
+
# Get similar images votes and metadata
|
136 |
+
species_votes, similar_images = get_similar_images_metadata(img_features, faiss_index, id_mapping, name_mapping)
|
137 |
+
|
138 |
+
if rank + 1 == len(ranks):
|
139 |
+
# Species level prediction
|
140 |
+
topk = probs.topk(TOP_K_CANDIDATES)
|
141 |
+
predictions = {
|
142 |
+
format_name(*txt_names[i]): prob.item()
|
143 |
+
for i, prob in zip(topk.indices, topk.values)
|
144 |
+
}
|
145 |
+
|
146 |
+
# Augment predictions with votes
|
147 |
+
augmented_predictions = predictions.copy()
|
148 |
+
for pred_name in predictions:
|
149 |
+
pred_name_lower = pred_name.lower()
|
150 |
+
for voted_species, vote_count in species_votes.items():
|
151 |
+
if voted_species in pred_name_lower or pred_name_lower in voted_species:
|
152 |
+
augmented_predictions[pred_name] += SIMILARITY_BOOST * vote_count
|
153 |
+
elif vote_count >= VOTE_THRESHOLD:
|
154 |
+
augmented_predictions[voted_species] = vote_count * SIMILARITY_BOOST
|
155 |
+
|
156 |
+
# Sort predictions
|
157 |
+
sorted_predictions = dict(sorted(
|
158 |
+
augmented_predictions.items(),
|
159 |
+
key=lambda x: x[1],
|
160 |
+
reverse=True
|
161 |
+
)[:k])
|
162 |
+
|
163 |
+
# Normalize and combine duplicates
|
164 |
+
total = sum(sorted_predictions.values())
|
165 |
+
sorted_predictions = {k: v/total for k, v in sorted_predictions.items()}
|
166 |
+
sorted_predictions = combine_duplicate_predictions(sorted_predictions)
|
167 |
+
|
168 |
+
logger.info(f"Top K predictions after combining duplicates: {sorted_predictions}")
|
169 |
+
return sorted_predictions, similar_images
|
170 |
+
|
171 |
+
# Higher rank prediction
|
172 |
+
output = collections.defaultdict(float)
|
173 |
+
for i in torch.nonzero(probs > MIN_PROB).squeeze():
|
174 |
+
output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]
|
175 |
+
|
176 |
+
# Incorporate votes for higher ranks
|
177 |
+
for species, vote_count in species_votes.items():
|
178 |
+
try:
|
179 |
+
# Find matching taxonomy in txt_names
|
180 |
+
for taxonomy, _ in txt_names:
|
181 |
+
if species in " ".join(taxonomy).lower():
|
182 |
+
higher_rank = " ".join(taxonomy[: rank + 1])
|
183 |
+
output[higher_rank] += SIMILARITY_BOOST * vote_count
|
184 |
+
break
|
185 |
+
except Exception as e:
|
186 |
+
logger.error(f"Error processing vote for species {species}: {e}")
|
187 |
+
|
188 |
+
# Get top-k predictions and normalize
|
189 |
+
topk_names = heapq.nlargest(k, output, key=output.get)
|
190 |
+
prediction_dict = {name: output[name] for name in topk_names}
|
191 |
+
|
192 |
+
# Normalize probabilities to sum to 1
|
193 |
+
total = sum(prediction_dict.values())
|
194 |
+
prediction_dict = {k: v/total for k, v in prediction_dict.items()}
|
195 |
+
prediction_dict = combine_duplicate_predictions(prediction_dict)
|
196 |
+
|
197 |
+
logger.info(f"Prediction dictionary after combining duplicates: {prediction_dict}")
|
198 |
+
|
199 |
+
return prediction_dict, similar_images
|
200 |
+
|
201 |
+
|
202 |
+
def change_output(choice):
|
203 |
+
return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)
|
204 |
+
|
205 |
+
def get_cache_paths(name="demo"):
|
206 |
+
"""Get paths for cached FAISS index and ID mapping."""
|
207 |
+
return {
|
208 |
+
'index': hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='cache/faiss_cache_demo.index', repo_type="dataset"),
|
209 |
+
'mapping': hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='cache/faiss_cache_demo_mapping.json', repo_type="dataset")
|
210 |
+
}
|
211 |
+
|
212 |
+
def build_name_mapping(txt_names):
|
213 |
+
"""Build mapping between scientific names and common names."""
|
214 |
+
name_mapping = {}
|
215 |
+
for taxonomy, common_name in txt_names:
|
216 |
+
if not common_name:
|
217 |
+
continue
|
218 |
+
if len(taxonomy) >= 2:
|
219 |
+
scientific_name = f"{taxonomy[-2]} {taxonomy[-1]}".lower()
|
220 |
+
common_name = common_name.lower()
|
221 |
+
name_mapping[scientific_name] = (scientific_name, common_name)
|
222 |
+
name_mapping[common_name] = (scientific_name, common_name)
|
223 |
+
return name_mapping
|
224 |
+
|
225 |
+
def load_faiss_index():
|
226 |
+
"""Load FAISS index from cache."""
|
227 |
+
cache_paths = get_cache_paths()
|
228 |
+
logger.info("Loading FAISS index from cache...")
|
229 |
+
index = faiss.read_index(cache_paths['index'])
|
230 |
+
with open(cache_paths['mapping'], 'r') as f:
|
231 |
+
id_mapping = json.load(f)
|
232 |
+
return index, id_mapping
|
233 |
+
|
234 |
+
def get_similar_images_metadata(img_embedding, faiss_index, id_mapping, name_mapping):
|
235 |
+
"""Get metadata for similar images using FAISS search."""
|
236 |
+
img_embedding_np = img_embedding.cpu().numpy()
|
237 |
+
if img_embedding_np.ndim == 1:
|
238 |
+
img_embedding_np = img_embedding_np.reshape(1, -1)
|
239 |
+
|
240 |
+
# Search for more images than needed to account for filtered matches
|
241 |
+
distances, indices = faiss_index.search(img_embedding_np, TOP_N_SIMILAR * 2)
|
242 |
+
|
243 |
+
# Filter out near-exact matches
|
244 |
+
valid_indices = []
|
245 |
+
valid_distances = []
|
246 |
+
valid_count = 0
|
247 |
+
|
248 |
+
for dist, idx in zip(distances[0], indices[0]):
|
249 |
+
# For inner product similarity, the distance is already the similarity
|
250 |
+
similarity = dist
|
251 |
+
if similarity > SIMILARITY_THRESHOLD:
|
252 |
+
continue
|
253 |
+
|
254 |
+
valid_indices.append(idx)
|
255 |
+
valid_distances.append(similarity)
|
256 |
+
valid_count += 1
|
257 |
+
|
258 |
+
if valid_count >= TOP_N_SIMILAR:
|
259 |
+
break
|
260 |
+
|
261 |
+
species_votes = {}
|
262 |
+
similar_images = []
|
263 |
+
|
264 |
+
for idx, similarity in zip(valid_indices[:5], valid_distances[:5]): # Only process top 5 for display
|
265 |
+
similar_img_id = id_mapping[idx]
|
266 |
+
|
267 |
+
try:
|
268 |
+
species_names = id_to_species_info.get(similar_img_id)
|
269 |
+
species_names = [name for name in species_names if name]
|
270 |
+
|
271 |
+
processed_names = set()
|
272 |
+
for species in species_names:
|
273 |
+
if not species:
|
274 |
+
continue
|
275 |
+
name_tuple = name_mapping.get(species)
|
276 |
+
if name_tuple:
|
277 |
+
processed_names.add(name_tuple[0])
|
278 |
+
else:
|
279 |
+
processed_names.add(species)
|
280 |
+
|
281 |
+
for species in processed_names:
|
282 |
+
species_votes[species] = species_votes.get(species, 0) + 1
|
283 |
+
|
284 |
+
# Store similar image info if the image file exists
|
285 |
+
# if img_path and os.path.exists(img_path):
|
286 |
+
similar_images.append({
|
287 |
+
'id': similar_img_id,
|
288 |
+
'species': next(iter(processed_names)) if processed_names else 'Unknown',
|
289 |
+
'common_name': species_names[-1],
|
290 |
+
'similarity': similarity # Add similarity score
|
291 |
+
})
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
logger.error(f"Error processing JSON for image {similar_img_id}: {e}")
|
295 |
+
continue
|
296 |
+
|
297 |
+
return species_votes, similar_images
|
298 |
+
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
logger.info("Starting.")
|
302 |
+
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
303 |
+
model = model.to(device)
|
304 |
+
logger.info("Created model.")
|
305 |
+
|
306 |
+
model = torch.compile(model)
|
307 |
+
logger.info("Compiled model.")
|
308 |
+
|
309 |
+
tokenizer = get_tokenizer(tokenizer_str)
|
310 |
+
|
311 |
+
id_to_photo_url = json.load(open(PHOTO_LOOKUP_PATH))
|
312 |
+
id_to_species_info = json.load(open(SPECIES_LOOKUP_PATH))
|
313 |
+
logger.info(f"Loaded {len(id_to_photo_url)} photo mappings")
|
314 |
+
logger.info(f"Loaded {len(id_to_species_info)} species mappings")
|
315 |
+
# Load text embeddings and build name mapping
|
316 |
+
txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
|
317 |
+
with open(txt_names_json) as fd:
|
318 |
+
txt_names = json.load(fd)
|
319 |
+
|
320 |
+
# Build name mapping
|
321 |
+
name_mapping = build_name_mapping(txt_names)
|
322 |
+
|
323 |
+
# Build or load FAISS index with test IDs
|
324 |
+
faiss_index, id_mapping = load_faiss_index()
|
325 |
+
|
326 |
+
# Define process_output function before using it
|
327 |
+
def process_output(img, rank):
|
328 |
+
predictions, similar_imgs = open_domain_classification(img, rank)
|
329 |
+
|
330 |
+
logger.info(f"Number of similar images found: {len(similar_imgs)}")
|
331 |
+
|
332 |
+
images = []
|
333 |
+
labels = []
|
334 |
+
|
335 |
+
for img_info in similar_imgs:
|
336 |
+
img_id = img_info['id']
|
337 |
+
img_url = id_to_photo_url.get(img_id)
|
338 |
+
img_url = img_url.replace("square", "small")
|
339 |
+
logger.info(f"Processing image URL: {img_url}")
|
340 |
+
|
341 |
+
try:
|
342 |
+
# Try fetching from URL first
|
343 |
+
response = requests.get(img_url)
|
344 |
+
if response.status_code == 200:
|
345 |
+
try:
|
346 |
+
img = Image.open(io.BytesIO(response.content))
|
347 |
+
images.append(img)
|
348 |
+
except Exception as e:
|
349 |
+
logger.info(f"Failed to load image from URL: {e}")
|
350 |
+
images.append(None)
|
351 |
+
else:
|
352 |
+
logger.info(f"Failed to fetch image from URL: {response}")
|
353 |
+
images.append(None)
|
354 |
+
|
355 |
+
# Add label regardless of image load success
|
356 |
+
label = f"**{img_info['species']}**"
|
357 |
+
if img_info['common_name']:
|
358 |
+
label += f" ({img_info['common_name']})"
|
359 |
+
label += f"\nSimilarity: {img_info['similarity']:.3f}"
|
360 |
+
label += f"\n[View on iNaturalist](https://www.inaturalist.org/observations/{img_id})"
|
361 |
+
labels.append(label)
|
362 |
+
|
363 |
+
except Exception as e:
|
364 |
+
logger.error(f"Error processing image {img_id}: {e}")
|
365 |
+
images.append(None)
|
366 |
+
labels.append("")
|
367 |
+
|
368 |
+
# Pad arrays if needed
|
369 |
+
images += [None] * (5 - len(images))
|
370 |
+
labels += [""] * (5 - len(labels))
|
371 |
+
|
372 |
+
logger.info(f"Final number of images: {len(images)}")
|
373 |
+
logger.info(f"Final number of labels: {len(labels)}")
|
374 |
+
|
375 |
+
return [predictions] + images + labels
|
376 |
+
|
377 |
+
with gr.Blocks(theme=theme) as app:
|
378 |
+
# Add header
|
379 |
+
with gr.Row(variant="panel"):
|
380 |
+
with gr.Column(scale=1):
|
381 |
+
gr.Image("image.jpg", elem_id="logo-img",
|
382 |
+
show_label=False )
|
383 |
+
with gr.Column(scale=30):
|
384 |
+
gr.Markdown("""Biome is a vision foundation model-powered tool customized to identify Singapore's local biodiversity.
|
385 |
+
<br/> <br/>
|
386 |
+
**Developed by**: Pye Sone Kyaw - AI Engineer @ Multimodal AI Team - AI Practice - GovTech SG
|
387 |
+
<br/> <br/>
|
388 |
+
Under the hood, Biome is using [BioCLIP](https://github.com/Imageomics/BioCLIP) augmented with multimodal search and retrieval to enhance its Singapore-specific biodiversity classification capabilities.
|
389 |
+
""")
|
390 |
+
|
391 |
+
with gr.Row(variant="panel", elem_id="images_panel"):
|
392 |
+
img_input = gr.Image(
|
393 |
+
height=400,
|
394 |
+
sources=["upload"],
|
395 |
+
type="pil"
|
396 |
+
)
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
with gr.Row():
|
401 |
+
|
402 |
+
with gr.Column():
|
403 |
+
with gr.Row():
|
404 |
+
gr.Examples(
|
405 |
+
examples=example_images,
|
406 |
+
inputs=img_input,
|
407 |
+
label="Example Images"
|
408 |
+
)
|
409 |
+
rank_dropdown = gr.Dropdown(
|
410 |
+
label="Taxonomic Rank",
|
411 |
+
info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
|
412 |
+
choices=ranks,
|
413 |
+
value="Species",
|
414 |
+
type="index",
|
415 |
+
)
|
416 |
+
open_domain_btn = gr.Button("Submit", variant="primary")
|
417 |
+
with gr.Column():
|
418 |
+
open_domain_output = gr.Label(
|
419 |
+
num_top_classes=k,
|
420 |
+
label="Prediction",
|
421 |
+
show_label=True,
|
422 |
+
value=None,
|
423 |
+
)
|
424 |
+
|
425 |
+
# New section for similar images
|
426 |
+
with gr.Row(variant="panel"):
|
427 |
+
with gr.Column():
|
428 |
+
gr.Markdown("### Most Similar Images from Database")
|
429 |
+
|
430 |
+
with gr.Row():
|
431 |
+
similar_images = [
|
432 |
+
gr.Image(label="Similar Image 1", height=200, show_label=True),
|
433 |
+
gr.Image(label="Similar Image 2", height=200, show_label=True),
|
434 |
+
gr.Image(label="Similar Image 3", height=200, show_label=True),
|
435 |
+
gr.Image(label="Similar Image 4", height=200, show_label=True),
|
436 |
+
gr.Image(label="Similar Image 5", height=200, show_label=True),
|
437 |
+
]
|
438 |
+
|
439 |
+
with gr.Row():
|
440 |
+
similar_labels = [
|
441 |
+
gr.Markdown("Species 1"),
|
442 |
+
gr.Markdown("Species 2"),
|
443 |
+
gr.Markdown("Species 3"),
|
444 |
+
gr.Markdown("Species 4"),
|
445 |
+
gr.Markdown("Species 5"),
|
446 |
+
]
|
447 |
+
|
448 |
+
rank_dropdown.change(
|
449 |
+
fn=change_output,
|
450 |
+
inputs=rank_dropdown,
|
451 |
+
outputs=[open_domain_output]
|
452 |
+
)
|
453 |
+
|
454 |
+
open_domain_btn.click(
|
455 |
+
fn=process_output,
|
456 |
+
inputs=[img_input, rank_dropdown],
|
457 |
+
outputs=[open_domain_output] + similar_images + similar_labels,
|
458 |
+
)
|
459 |
+
|
460 |
+
with gr.Row(variant="panel"):
|
461 |
+
gr.Markdown("""
|
462 |
+
**Disclaimer**: This is a proof-of-concept demo for non-commercial purposes. No data is stored or used for any form of training, and all data used for retrieval are from [iNaturalist](https://inaturalist.org/).
|
463 |
+
The adage of garbage in, garbage out applies here - uploading images not biodiversity-related will yield unpredictable results.
|
464 |
+
""")
|
465 |
+
app.queue(max_size=20)
|
466 |
+
app.launch(share=False, enable_monitoring=False, allowed_paths=["/app/"])
|
examples/bubul.jpg
ADDED
![]() |
Git LFS Details
|
examples/hornbill.jpg
ADDED
![]() |
Git LFS Details
|
examples/lizard.jpg
ADDED
![]() |
Git LFS Details
|
examples/monkey.jpg
ADDED
![]() |
Git LFS Details
|
examples/otter.jpg
ADDED
![]() |
Git LFS Details
|
image.jpg
ADDED
![]() |
photo_lookup.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bb8e6dbc951aa8aea31a950e0dac2e16bdc0fe5bd571f0f7c9fd06c26c8fa71
|
3 |
+
size 39006676
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
open_clip_torch
|
2 |
+
torchvision
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
pillow
|
6 |
+
faiss-cpu
|
species_lookup.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a37171713219bf9ef85a1be7ff6152663dd046574b803032a94dee32272b0574
|
3 |
+
size 45906896
|
txt_emb_species.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844e6fabc06cac072214d566b78f40825b154efa9479eb11285030ca038b2ece
|
3 |
+
size 65731052
|