import gradio as gr import PIL.Image as Image from ultralytics import ASSETS, YOLO model = YOLO("https://huggingface.co/spaces/gpbhupinder/test/blob/main/model_-%2023%20june%202024%2019_22.pt") def predict_image(img, conf_threshold, iou_threshold): """Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds.""" results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), # gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), # gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), ], outputs=gr.Image(type="pil", label="Result"), title="GP Wolf Classifier", description="Upload images for inference.", examples=[ [ASSETS / "gp.jpg", 0.25, 0.45], [ASSETS / "wolf.jpg", 0.25, 0.45], ], ) if __name__ == "__main__": iface.launch()