Spaces:
Runtime error
Runtime error
fix
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import gradio
|
8 |
+
|
9 |
+
from fastai.vision.all import *
|
10 |
+
from fastai.data.all import *
|
11 |
+
from pathlib import Path
|
12 |
+
import pandas as pd
|
13 |
+
from matplotlib.pyplot import specgram
|
14 |
+
import librosa
|
15 |
+
import librosa.display
|
16 |
+
from huggingface_hub import hf_hub_download
|
17 |
+
from fastai.learner import load_learner
|
18 |
+
|
19 |
+
|
20 |
+
# In[9]:
|
21 |
+
|
22 |
+
|
23 |
+
ref_file = hf_hub_download("gputrain/UrbanSound8K-model", "UrbanSound8K.csv")
|
24 |
+
|
25 |
+
model_file = hf_hub_download("gputrain/UrbanSound8K-model", "model.pkl")
|
26 |
+
|
27 |
+
|
28 |
+
# In[10]:
|
29 |
+
|
30 |
+
|
31 |
+
df = pd.read_csv(ref_file)
|
32 |
+
df['fname'] = df[['slice_file_name','fold']].apply (lambda x: str(x['slice_file_name'][:-4])+'.png'.strip(),axis=1 )
|
33 |
+
my_dict = dict(zip(df.fname,df['class']))
|
34 |
+
def label_func(f_name):
|
35 |
+
f_name = str(f_name).split('/')[-1:][0]
|
36 |
+
return my_dict[f_name]
|
37 |
+
model = load_learner (model_file)
|
38 |
+
EXAMPLES_PATH = Path("./examples")
|
39 |
+
labels = model.dls.vocab
|
40 |
+
|
41 |
+
|
42 |
+
# In[11]:
|
43 |
+
|
44 |
+
|
45 |
+
with open("article.md") as f:
|
46 |
+
article = f.read()
|
47 |
+
|
48 |
+
|
49 |
+
# In[12]:
|
50 |
+
|
51 |
+
|
52 |
+
interface_options = {
|
53 |
+
"title": "Urban Sound 8K Classification",
|
54 |
+
"description": "Fast AI example of using a pre-trained Resnet34 vision model for an audio classification task on the [Urban Sounds](https://urbansounddataset.weebly.com/urbansound8k.html) dataset. ",
|
55 |
+
"article": article,
|
56 |
+
"interpretation": "default",
|
57 |
+
"layout": "horizontal",
|
58 |
+
# Audio from validation file
|
59 |
+
"examples": ["dog_bark.wav", "children_playing.wav", "air_conditioner.wav", "street_music.wav", "engine_idling.wav",
|
60 |
+
"jackhammer.wav", "drilling.wav", "siren.wav","car_horn.wav","gun_shot.wav"],
|
61 |
+
"allow_flagging": "never"
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
# In[13]:
|
66 |
+
|
67 |
+
|
68 |
+
def convert_sounds_melspectogram (audio_file):
|
69 |
+
|
70 |
+
samples, sample_rate = librosa.load(audio_file) #create onces with librosa
|
71 |
+
|
72 |
+
fig = plt.figure(figsize=[0.72,0.72])
|
73 |
+
ax = fig.add_subplot(111)
|
74 |
+
ax.axes.get_xaxis().set_visible(False)
|
75 |
+
ax.axes.get_yaxis().set_visible(False)
|
76 |
+
ax.set_frame_on(False)
|
77 |
+
melS = librosa.feature.melspectrogram(y=samples, sr=sample_rate)
|
78 |
+
librosa.display.specshow(librosa.power_to_db(melS, ref=np.max))
|
79 |
+
filename = 'temp.png'
|
80 |
+
plt.savefig(filename, dpi=400, bbox_inches='tight',pad_inches=0)
|
81 |
+
plt.close('all')
|
82 |
+
|
83 |
+
return None
|
84 |
+
|
85 |
+
|
86 |
+
# In[14]:
|
87 |
+
|
88 |
+
|
89 |
+
def predict():
|
90 |
+
img = PILImage.create('temp.png')
|
91 |
+
pred,pred_idx,probs = model.predict(img)
|
92 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
93 |
+
return labels_probs
|
94 |
+
|
95 |
+
|
96 |
+
# In[20]:
|
97 |
+
|
98 |
+
|
99 |
+
def end2endpipeline(filename):
|
100 |
+
convert_sounds_melspectogram(filename)
|
101 |
+
return predict()
|
102 |
+
|
103 |
+
|
104 |
+
# In[16]:
|
105 |
+
|
106 |
+
|
107 |
+
demo = gradio.Interface(
|
108 |
+
fn=end2endpipeline,
|
109 |
+
inputs=gradio.inputs.Audio(source="upload", type="filepath"),
|
110 |
+
outputs=gradio.outputs.Label(num_top_classes=10),
|
111 |
+
**interface_options,
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
# In[19]:
|
116 |
+
|
117 |
+
|
118 |
+
launch_options = {
|
119 |
+
"enable_queue": True,
|
120 |
+
"share": False,
|
121 |
+
#"cache_examples": True,
|
122 |
+
}
|
123 |
+
|
124 |
+
demo.launch(**launch_options)
|
125 |
+
|
126 |
+
|
127 |
+
# In[ ]:
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|