from transformers import GPTNeoForCausalLM, GPT2Tokenizer import gradio as gr model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M") tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-125M") prompt = """This is a discussion between a person and Hassan Kane, an entrepreneur. person: What are you working on? Hassan: This new AI community building the future of Africa person: Where are you? Hassan: In Lagos for a week, then Paris or London. person: How's it going? Hassan: Not bad.. Just trying to hit EV (escape velocity) with my startup person: """ def my_split(s, seps): res = [s] for sep in seps: s, res = res, [] for seq in s: res += seq.split(sep) return res # input = "Who are you?" def chat_base(input): p = prompt + input input_ids = tokenizer(p, return_tensors="pt").input_ids gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,) gen_text = tokenizer.batch_decode(gen_tokens)[0] # print(gen_text) result = gen_text[len(p):] # print(">", result) result = my_split(result, [']', '\n'])[1] # print(">>", result) if "Hassan: " in result: result = result.split("Hassan: ")[-1] # print(">>>", result) return result import gradio as gr def chat(message): history = gr.get_state() or [] print(history) response = chat_base(message) history.append((message, response)) gr.set_state(history) html = "
" for user_msg, resp_msg in history: html += f"
{user_msg}
" html += f"
{resp_msg}
" html += "
" return response iface = gr.Interface(chat_base, gr.inputs.Textbox(label="Ask Hassan a Question"), "text", allow_screenshot=False, allow_flagging=False) iface.launch()