Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 4.
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 4.27.0
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fake_diffusion\n", "### This demo uses a fake model to showcase iterative output. The Image output will update every time a generator is returned until the final image.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "\n", "def fake_diffusion(steps):\n", " for i in range(steps):\n", " time.sleep(1)\n", " image =
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fake_diffusion\n", "### This demo uses a fake model to showcase iterative output. The Image output will update every time a generator is returned until the final image.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "\n", "def fake_diffusion(steps):\n", " rng = np.random.default_rng()\n", " for i in range(steps):\n", " time.sleep(1)\n", " image = rng.random(size=(600, 600, 3))\n", " yield image\n", " image = np.ones((1000,1000,3), np.uint8)\n", " image[:] = [255, 124, 0]\n", " yield image\n", "\n", "\n", "demo = gr.Interface(fake_diffusion,\n", " inputs=gr.Slider(1, 10, 3, step=1),\n", " outputs=\"image\")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -3,16 +3,19 @@ import numpy as np
|
|
3 |
import time
|
4 |
|
5 |
def fake_diffusion(steps):
|
|
|
6 |
for i in range(steps):
|
7 |
time.sleep(1)
|
8 |
-
image =
|
9 |
yield image
|
10 |
image = np.ones((1000,1000,3), np.uint8)
|
11 |
image[:] = [255, 124, 0]
|
12 |
yield image
|
13 |
|
14 |
|
15 |
-
demo = gr.Interface(fake_diffusion,
|
|
|
|
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
demo.launch()
|
|
|
3 |
import time
|
4 |
|
5 |
def fake_diffusion(steps):
|
6 |
+
rng = np.random.default_rng()
|
7 |
for i in range(steps):
|
8 |
time.sleep(1)
|
9 |
+
image = rng.random(size=(600, 600, 3))
|
10 |
yield image
|
11 |
image = np.ones((1000,1000,3), np.uint8)
|
12 |
image[:] = [255, 124, 0]
|
13 |
yield image
|
14 |
|
15 |
|
16 |
+
demo = gr.Interface(fake_diffusion,
|
17 |
+
inputs=gr.Slider(1, 10, 3, step=1),
|
18 |
+
outputs="image")
|
19 |
|
20 |
if __name__ == "__main__":
|
21 |
demo.launch()
|