aliabd HF staff commited on
Commit
e287b1c
·
1 Parent(s): 5c679dc

Upload with huggingface_hub

Browse files
Files changed (6) hide show
  1. README.md +5 -6
  2. __pycache__/run.cpython-36.pyc +0 -0
  3. fraud.csv +11 -0
  4. requirements.txt +1 -0
  5. run.py +39 -0
  6. screenshot.png +0 -0
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Fraud Detector Main
3
  emoji: 🔥
4
- colorFrom: green
5
- colorTo: green
6
  sdk: gradio
7
  sdk_version: 3.6
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: fraud_detector_main
4
  emoji: 🔥
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 3.6
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
__pycache__/run.cpython-36.pyc ADDED
Binary file (1.08 kB). View file
 
fraud.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ time,retail,food,other
2
+ 0,109,145,86
3
+ 1,35,87,43
4
+ 2,49,117,34
5
+ 3,127,66,17
6
+ 4,39,82,17
7
+ 5,101,56,79
8
+ 6,100,129,67
9
+ 7,17,88,97
10
+ 8,76,85,145
11
+ 9,111,106,35
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ pandashttps://gradio-main-build.s3.amazonaws.com/c3bec6153737855510542e8154391f328ac72606/gradio-3.6-py3-none-any.whl
run.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import os
3
+ import gradio as gr
4
+
5
+
6
+ def fraud_detector(card_activity, categories, sensitivity):
7
+ activity_range = random.randint(0, 100)
8
+ drop_columns = [
9
+ column for column in ["retail", "food", "other"] if column not in categories
10
+ ]
11
+ if len(drop_columns):
12
+ card_activity.drop(columns=drop_columns, inplace=True)
13
+ return (
14
+ card_activity,
15
+ card_activity,
16
+ {"fraud": activity_range / 100.0, "not fraud": 1 - activity_range / 100.0},
17
+ )
18
+
19
+
20
+ demo = gr.Interface(
21
+ fraud_detector,
22
+ [
23
+ gr.Timeseries(x="time", y=["retail", "food", "other"]),
24
+ gr.CheckboxGroup(
25
+ ["retail", "food", "other"], value=["retail", "food", "other"]
26
+ ),
27
+ gr.Slider(1, 3),
28
+ ],
29
+ [
30
+ "dataframe",
31
+ gr.Timeseries(x="time", y=["retail", "food", "other"]),
32
+ gr.Label(label="Fraud Level"),
33
+ ],
34
+ examples=[
35
+ [os.path.join(os.path.dirname(__file__), "fraud.csv"), ["retail", "food", "other"], 1.0],
36
+ ],
37
+ )
38
+ if __name__ == "__main__":
39
+ demo.launch()
screenshot.png ADDED