Spaces:
Runtime error
Runtime error
Upload with huggingface_hub
Browse files
README.md
CHANGED
@@ -6,7 +6,6 @@ colorFrom: indigo
|
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.4.1
|
9 |
-
|
10 |
-
app_file: app.py
|
11 |
pinned: false
|
12 |
---
|
|
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.4.1
|
9 |
+
app_file: run.py
|
|
|
10 |
pinned: false
|
11 |
---
|
run.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from torch import nn
|
6 |
+
import gdown
|
7 |
+
|
8 |
+
url = 'https://drive.google.com/uc?id=1dsk2JNZLRDjC-0J4wIQX_FcVurPaXaAZ'
|
9 |
+
output = 'pytorch_model.bin'
|
10 |
+
gdown.download(url, output, quiet=False)
|
11 |
+
|
12 |
+
LABELS = Path('class_names.txt').read_text().splitlines()
|
13 |
+
|
14 |
+
model = nn.Sequential(
|
15 |
+
nn.Conv2d(1, 32, 3, padding='same'),
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.MaxPool2d(2),
|
18 |
+
nn.Conv2d(32, 64, 3, padding='same'),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.MaxPool2d(2),
|
21 |
+
nn.Conv2d(64, 128, 3, padding='same'),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.MaxPool2d(2),
|
24 |
+
nn.Flatten(),
|
25 |
+
nn.Linear(1152, 256),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.Linear(256, len(LABELS)),
|
28 |
+
)
|
29 |
+
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
|
30 |
+
model.load_state_dict(state_dict, strict=False)
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
def predict(input):
|
34 |
+
im = input
|
35 |
+
if im is None:
|
36 |
+
return None
|
37 |
+
|
38 |
+
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
out = model(x)
|
42 |
+
|
43 |
+
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
44 |
+
|
45 |
+
values, indices = torch.topk(probabilities, 5)
|
46 |
+
|
47 |
+
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
48 |
+
|
49 |
+
|
50 |
+
interface = gr.Interface(predict, inputs=gr.templates.Sketchpad(label="Draw Here"), outputs=gr.Label(label="Guess"), theme="default", css=".footer{display:none !important}", live=True)
|
51 |
+
interface.launch(enable_queue=False)
|