huanngzh's picture
init
f5879f9
raw
history blame
3.25 kB
import os
from typing import Dict, Optional, Union
import safetensors
import torch
from diffusers.utils import _get_model_file, logging
from safetensors import safe_open
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CustomAdapterMixin:
def init_custom_adapter(self, *args, **kwargs):
self._init_custom_adapter(*args, **kwargs)
def _init_custom_adapter(self, *args, **kwargs):
raise NotImplementedError
def load_custom_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
weight_name: str,
subfolder: Optional[str] = None,
**kwargs,
):
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
subfolder=subfolder,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
else:
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path_or_dict
self._load_custom_adapter(state_dict)
def _load_custom_adapter(self, state_dict):
raise NotImplementedError
def save_custom_adapter(
self,
save_directory: Union[str, os.PathLike],
weight_name: str,
safe_serialization: bool = False,
**kwargs,
):
if os.path.isfile(save_directory):
logger.error(
f"Provided path ({save_directory}) should be a directory, not a file"
)
return
if safe_serialization:
def save_function(weights, filename):
return safetensors.torch.save_file(
weights, filename, metadata={"format": "pt"}
)
else:
save_function = torch.save
# Save the model
state_dict = self._save_custom_adapter(**kwargs)
save_function(state_dict, os.path.join(save_directory, weight_name))
logger.info(
f"Custom adapter weights saved in {os.path.join(save_directory, weight_name)}"
)
def _save_custom_adapter(self):
raise NotImplementedError