Spaces:
Running
Running
Alexander Watson
commited on
Commit
•
0629e69
1
Parent(s):
c918aac
analysis improvements
Browse files- src/utils/analysis.py +296 -95
- src/utils/visualization.py +76 -58
src/utils/analysis.py
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
-
|
|
|
|
|
2 |
import json
|
3 |
-
import yaml
|
4 |
import re
|
5 |
-
import
|
|
|
|
|
6 |
import plotly.express as px
|
7 |
import plotly.graph_objects as go
|
8 |
-
import pandas as pd
|
9 |
-
import base64
|
10 |
-
import io
|
11 |
-
from collections import Counter
|
12 |
import tiktoken
|
|
|
|
|
13 |
|
14 |
|
15 |
def extract_json_from_response(text: str) -> str:
|
@@ -130,8 +131,8 @@ def create_distribution_plot(data, column):
|
|
130 |
|
131 |
def create_wordcloud(data, column):
|
132 |
"""Create a word cloud visualization."""
|
133 |
-
from wordcloud import WordCloud
|
134 |
import matplotlib.pyplot as plt
|
|
|
135 |
|
136 |
try:
|
137 |
# Handle list columns
|
@@ -177,16 +178,53 @@ def create_wordcloud(data, column):
|
|
177 |
raise e
|
178 |
|
179 |
|
180 |
-
def analyze_dataset_with_openai(client: OpenAI,
|
181 |
-
"""Analyze dataset
|
182 |
-
#
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
prompt = f"""Analyze this dataset sample and provide the following in a JSON response:
|
192 |
|
@@ -195,15 +233,11 @@ def analyze_dataset_with_openai(client: OpenAI, dataset_sample) -> dict:
|
|
195 |
- A bullet-pointed list of key features and statistics
|
196 |
- A brief statement about potential ML/AI applications
|
197 |
|
198 |
-
2. A schema showing each field's type and description.
|
199 |
-
{
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
- "number" for numeric fields
|
204 |
-
- "boolean" for true/false
|
205 |
-
- "array of X" for arrays where X is the type of elements
|
206 |
-
- "object" for nested objects, with nested field descriptions
|
207 |
|
208 |
3. A formatted example record
|
209 |
|
@@ -220,15 +254,15 @@ def analyze_dataset_with_openai(client: OpenAI, dataset_sample) -> dict:
|
|
220 |
}},
|
221 |
"schema": {{
|
222 |
"field_name": {{
|
223 |
-
"type": "
|
224 |
"description": "Description of what this field contains"
|
225 |
}}
|
226 |
}},
|
227 |
"example": {{"key": "value"}}
|
228 |
}}
|
229 |
|
230 |
-
For context, here are more sample records
|
231 |
-
{
|
232 |
"""
|
233 |
|
234 |
try:
|
@@ -241,15 +275,12 @@ def analyze_dataset_with_openai(client: OpenAI, dataset_sample) -> dict:
|
|
241 |
|
242 |
# Get the response content
|
243 |
response_text = response.choices[0].message.content
|
244 |
-
print("OpenAI Response:", response_text)
|
245 |
|
246 |
# Extract JSON from the response
|
247 |
json_str = extract_json_from_response(response_text)
|
248 |
-
print("Extracted JSON:", json_str)
|
249 |
|
250 |
# Parse the JSON
|
251 |
result = json.loads(json_str)
|
252 |
-
print("Parsed Result:", result)
|
253 |
return result
|
254 |
|
255 |
except Exception as e:
|
@@ -271,33 +302,33 @@ def analyze_dataset_statistics(df):
|
|
271 |
"basic_stats": {
|
272 |
"total_records": len(df),
|
273 |
"total_features": len(df.columns),
|
274 |
-
"memory_usage": f"{df.memory_usage(deep=True).sum() / (1024*1024):.2f} MB"
|
275 |
},
|
276 |
-
"token_stats": {
|
277 |
-
"total": 0,
|
278 |
-
"by_column": {}
|
279 |
-
}
|
280 |
}
|
281 |
-
|
282 |
# Count tokens for each column
|
283 |
for column in df.columns:
|
284 |
try:
|
285 |
-
if df[column].dtype ==
|
286 |
# For list columns, join items into strings
|
287 |
if isinstance(df[column].iloc[0], list):
|
288 |
-
token_counts = df[column].apply(
|
|
|
|
|
289 |
else:
|
290 |
token_counts = df[column].apply(lambda x: count_tokens(str(x)))
|
291 |
-
|
292 |
total_tokens = int(token_counts.sum())
|
293 |
stats["token_stats"]["total"] += total_tokens
|
294 |
stats["token_stats"]["by_column"][column] = total_tokens
|
295 |
except Exception as e:
|
296 |
print(f"Error processing column {column}: {str(e)}")
|
297 |
continue
|
298 |
-
|
299 |
return stats
|
300 |
|
|
|
301 |
def format_dataset_stats(stats):
|
302 |
"""Format simplified dataset statistics as markdown."""
|
303 |
md = """## Dataset Overview
|
@@ -306,7 +337,9 @@ def format_dataset_stats(stats):
|
|
306 |
* Total Records: {total_records:,}
|
307 |
* Total Features: {total_features}
|
308 |
* Memory Usage: {memory_usage}
|
309 |
-
""".format(
|
|
|
|
|
310 |
|
311 |
# Token Statistics
|
312 |
if stats["token_stats"]["total"] > 0:
|
@@ -319,6 +352,7 @@ def format_dataset_stats(stats):
|
|
319 |
|
320 |
return md
|
321 |
|
|
|
322 |
def generate_dataset_card(
|
323 |
dataset_info: dict,
|
324 |
distribution_plots: dict,
|
@@ -326,56 +360,23 @@ def generate_dataset_card(
|
|
326 |
openai_analysis: dict,
|
327 |
df: pd.DataFrame,
|
328 |
) -> str:
|
329 |
-
"""Generate
|
|
|
|
|
330 |
yaml_content = {
|
331 |
"language": ["en"],
|
332 |
"license": "apache-2.0",
|
333 |
"multilinguality": "monolingual",
|
334 |
-
"size_categories": [
|
335 |
"task_categories": ["other"],
|
336 |
}
|
337 |
-
|
338 |
yaml_string = yaml.dump(yaml_content, sort_keys=False)
|
339 |
-
description = openai_analysis["description"]
|
340 |
-
|
341 |
-
# Generate schema table
|
342 |
-
schema_table = generate_schema_table(openai_analysis["schema"])
|
343 |
-
|
344 |
-
# Format example as JSON code block
|
345 |
-
example_block = f"```json\n{json.dumps(openai_analysis['example'], indent=2)}\n```"
|
346 |
|
347 |
# Generate dataset statistics
|
348 |
stats = analyze_dataset_statistics(df)
|
349 |
-
|
350 |
-
|
351 |
-
# Add distribution plots inline
|
352 |
-
distribution_plots_md = ""
|
353 |
-
if distribution_plots:
|
354 |
-
distribution_plots_md = "\n### Distribution Plots\n\n"
|
355 |
-
distribution_plots_md += '<div style="display: grid; grid-template-columns: repeat(1, 1fr); gap: 20px;">\n'
|
356 |
-
for col, img_str in distribution_plots.items():
|
357 |
-
distribution_plots_md += f"<div>\n"
|
358 |
-
distribution_plots_md += f"<h4>Distribution of {col}</h4>\n"
|
359 |
-
distribution_plots_md += f'<img src="data:image/png;base64,{img_str}" style="width: 100%; height: auto;">\n'
|
360 |
-
distribution_plots_md += "</div>\n"
|
361 |
-
distribution_plots_md += "</div>\n\n"
|
362 |
-
|
363 |
-
# Add word clouds inline in a grid
|
364 |
-
wordcloud_plots_md = ""
|
365 |
-
if wordcloud_plots:
|
366 |
-
wordcloud_plots_md = "\n### Word Clouds\n\n"
|
367 |
-
wordcloud_plots_md += '<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 20px;">\n'
|
368 |
-
for col, img_str in wordcloud_plots.items():
|
369 |
-
wordcloud_plots_md += f"<div>\n"
|
370 |
-
wordcloud_plots_md += f"<h4>Word Cloud for {col}</h4>\n"
|
371 |
-
wordcloud_plots_md += f'<img src="data:image/png;base64,{img_str}" style="width: 100%; height: auto;">\n'
|
372 |
-
wordcloud_plots_md += "</div>\n"
|
373 |
-
wordcloud_plots_md += "</div>\n\n"
|
374 |
-
|
375 |
-
# Generate clean dataset name for citation
|
376 |
-
clean_dataset_name = dataset_info["dataset_name"].replace("/", "_")
|
377 |
|
378 |
-
# Build the markdown content
|
379 |
readme_content = f"""---
|
380 |
{yaml_string}---
|
381 |
|
@@ -383,39 +384,73 @@ def generate_dataset_card(
|
|
383 |
|
384 |
{description['overview']}
|
385 |
|
386 |
-
|
387 |
{chr(10).join(f'* {feature}' for feature in description['key_features'])}
|
388 |
|
|
|
389 |
{description['ml_applications']}
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
## Dataset Schema
|
392 |
|
393 |
-
|
|
|
|
|
394 |
|
395 |
## Example Record
|
396 |
|
397 |
-
|
|
|
|
|
398 |
|
399 |
## Data Distribution Analysis
|
400 |
|
401 |
-
The following visualizations show
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
-
|
404 |
-
{wordcloud_plots_md}
|
405 |
|
406 |
-
|
|
|
|
|
407 |
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
-
|
|
|
|
|
|
|
411 |
|
412 |
```bibtex
|
413 |
-
@dataset{{{
|
414 |
title = {{{dataset_info['dataset_name']}}},
|
415 |
-
author = {{Dataset Authors}},
|
416 |
year = {{{datetime.datetime.now().year}}},
|
417 |
publisher = {{Hugging Face}},
|
418 |
-
howpublished = {{Hugging Face Datasets}},
|
419 |
url = {{https://huggingface.co/datasets/{dataset_info['dataset_name']}}}
|
420 |
}}
|
421 |
```
|
@@ -427,11 +462,154 @@ This dataset is released under the Apache 2.0 License. When using this dataset:
|
|
427 |
* 📚 Cite the dataset using the BibTeX entry above
|
428 |
* 🤝 Consider contributing improvements or reporting issues
|
429 |
* 💡 Share derivative works with the community when possible
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
For questions or additional information, please visit the dataset repository on Hugging Face.
|
432 |
"""
|
433 |
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
|
437 |
def generate_schema_table(schema: dict) -> str:
|
@@ -449,6 +627,29 @@ def generate_schema_table(schema: dict) -> str:
|
|
449 |
return table
|
450 |
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
def format_schema_item(field_name: str, field_info: dict, prefix: str = "") -> list:
|
453 |
"""Recursively format schema items for nested structures."""
|
454 |
rows = []
|
|
|
1 |
+
import base64
|
2 |
+
import datetime
|
3 |
+
import io
|
4 |
import json
|
|
|
5 |
import re
|
6 |
+
from collections import Counter
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
import plotly.express as px
|
10 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
|
|
11 |
import tiktoken
|
12 |
+
import yaml
|
13 |
+
from openai import OpenAI
|
14 |
|
15 |
|
16 |
def extract_json_from_response(text: str) -> str:
|
|
|
131 |
|
132 |
def create_wordcloud(data, column):
|
133 |
"""Create a word cloud visualization."""
|
|
|
134 |
import matplotlib.pyplot as plt
|
135 |
+
from wordcloud import WordCloud
|
136 |
|
137 |
try:
|
138 |
# Handle list columns
|
|
|
178 |
raise e
|
179 |
|
180 |
|
181 |
+
def analyze_dataset_with_openai(client: OpenAI, data) -> dict:
|
182 |
+
"""Analyze dataset using OpenAI API with improved type inference and efficient sampling."""
|
183 |
+
# Convert dictionary to DataFrame if needed
|
184 |
+
if isinstance(data, dict):
|
185 |
+
df = pd.DataFrame(data)
|
186 |
+
else:
|
187 |
+
df = data
|
188 |
+
|
189 |
+
# Take a very small sample for efficiency
|
190 |
+
sample_size = min(3, len(df))
|
191 |
+
if len(df) > 3:
|
192 |
+
sample_indices = df.index[
|
193 |
+
:sample_size
|
194 |
+
] # Take first 3 rows instead of random sampling
|
195 |
+
sample_df = df.loc[sample_indices]
|
196 |
+
else:
|
197 |
+
sample_df = df
|
198 |
+
|
199 |
+
dataset_sample = sample_df.to_dict("records")
|
200 |
+
single_record = dataset_sample[0]
|
201 |
+
|
202 |
+
# Create type hints dictionary - only process the sample
|
203 |
+
type_hints = {}
|
204 |
+
for column in sample_df.columns:
|
205 |
+
# Get the pandas dtype
|
206 |
+
dtype = sample_df[column].dtype
|
207 |
+
|
208 |
+
# Efficiently identify types without complex operations
|
209 |
+
if pd.api.types.is_integer_dtype(dtype):
|
210 |
+
type_hints[column] = "integer"
|
211 |
+
elif pd.api.types.is_float_dtype(dtype):
|
212 |
+
type_hints[column] = "number"
|
213 |
+
elif pd.api.types.is_bool_dtype(dtype):
|
214 |
+
type_hints[column] = "boolean"
|
215 |
+
elif pd.api.types.is_datetime64_any_dtype(dtype):
|
216 |
+
type_hints[column] = "datetime"
|
217 |
+
elif pd.api.types.is_categorical_dtype(dtype):
|
218 |
+
type_hints[column] = "categorical"
|
219 |
+
elif pd.api.types.is_string_dtype(dtype):
|
220 |
+
# Simple check for list-like values
|
221 |
+
first_val = sample_df[column].iloc[0]
|
222 |
+
if isinstance(first_val, list):
|
223 |
+
type_hints[column] = "array"
|
224 |
+
else:
|
225 |
+
type_hints[column] = "string"
|
226 |
+
else:
|
227 |
+
type_hints[column] = "unknown"
|
228 |
|
229 |
prompt = f"""Analyze this dataset sample and provide the following in a JSON response:
|
230 |
|
|
|
233 |
- A bullet-pointed list of key features and statistics
|
234 |
- A brief statement about potential ML/AI applications
|
235 |
|
236 |
+
2. A schema showing each field's type and description. Here is the actual DataFrame type information:
|
237 |
+
{json.dumps(type_hints, indent=2)}
|
238 |
|
239 |
+
And here's a single record for reference:
|
240 |
+
{json.dumps(single_record, indent=2)}
|
|
|
|
|
|
|
|
|
241 |
|
242 |
3. A formatted example record
|
243 |
|
|
|
254 |
}},
|
255 |
"schema": {{
|
256 |
"field_name": {{
|
257 |
+
"type": "use the type from the provided type_hints",
|
258 |
"description": "Description of what this field contains"
|
259 |
}}
|
260 |
}},
|
261 |
"example": {{"key": "value"}}
|
262 |
}}
|
263 |
|
264 |
+
For context, here are more sample records:
|
265 |
+
{json.dumps(dataset_sample, indent=2)}
|
266 |
"""
|
267 |
|
268 |
try:
|
|
|
275 |
|
276 |
# Get the response content
|
277 |
response_text = response.choices[0].message.content
|
|
|
278 |
|
279 |
# Extract JSON from the response
|
280 |
json_str = extract_json_from_response(response_text)
|
|
|
281 |
|
282 |
# Parse the JSON
|
283 |
result = json.loads(json_str)
|
|
|
284 |
return result
|
285 |
|
286 |
except Exception as e:
|
|
|
302 |
"basic_stats": {
|
303 |
"total_records": len(df),
|
304 |
"total_features": len(df.columns),
|
305 |
+
"memory_usage": f"{df.memory_usage(deep=True).sum() / (1024*1024):.2f} MB",
|
306 |
},
|
307 |
+
"token_stats": {"total": 0, "by_column": {}},
|
|
|
|
|
|
|
308 |
}
|
309 |
+
|
310 |
# Count tokens for each column
|
311 |
for column in df.columns:
|
312 |
try:
|
313 |
+
if df[column].dtype == "object" or isinstance(df[column].iloc[0], list):
|
314 |
# For list columns, join items into strings
|
315 |
if isinstance(df[column].iloc[0], list):
|
316 |
+
token_counts = df[column].apply(
|
317 |
+
lambda x: count_tokens(" ".join(str(item) for item in x))
|
318 |
+
)
|
319 |
else:
|
320 |
token_counts = df[column].apply(lambda x: count_tokens(str(x)))
|
321 |
+
|
322 |
total_tokens = int(token_counts.sum())
|
323 |
stats["token_stats"]["total"] += total_tokens
|
324 |
stats["token_stats"]["by_column"][column] = total_tokens
|
325 |
except Exception as e:
|
326 |
print(f"Error processing column {column}: {str(e)}")
|
327 |
continue
|
328 |
+
|
329 |
return stats
|
330 |
|
331 |
+
|
332 |
def format_dataset_stats(stats):
|
333 |
"""Format simplified dataset statistics as markdown."""
|
334 |
md = """## Dataset Overview
|
|
|
337 |
* Total Records: {total_records:,}
|
338 |
* Total Features: {total_features}
|
339 |
* Memory Usage: {memory_usage}
|
340 |
+
""".format(
|
341 |
+
**stats["basic_stats"]
|
342 |
+
)
|
343 |
|
344 |
# Token Statistics
|
345 |
if stats["token_stats"]["total"] > 0:
|
|
|
352 |
|
353 |
return md
|
354 |
|
355 |
+
|
356 |
def generate_dataset_card(
|
357 |
dataset_info: dict,
|
358 |
distribution_plots: dict,
|
|
|
360 |
openai_analysis: dict,
|
361 |
df: pd.DataFrame,
|
362 |
) -> str:
|
363 |
+
"""Generate a beautiful and clean dataset card."""
|
364 |
+
|
365 |
+
# Basic dataset metadata
|
366 |
yaml_content = {
|
367 |
"language": ["en"],
|
368 |
"license": "apache-2.0",
|
369 |
"multilinguality": "monolingual",
|
370 |
+
"size_categories": [get_size_category(len(df))],
|
371 |
"task_categories": ["other"],
|
372 |
}
|
|
|
373 |
yaml_string = yaml.dump(yaml_content, sort_keys=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
# Generate dataset statistics
|
376 |
stats = analyze_dataset_statistics(df)
|
377 |
+
description = openai_analysis["description"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
+
# Build the markdown content with proper spacing
|
380 |
readme_content = f"""---
|
381 |
{yaml_string}---
|
382 |
|
|
|
384 |
|
385 |
{description['overview']}
|
386 |
|
387 |
+
### Key Features
|
388 |
{chr(10).join(f'* {feature}' for feature in description['key_features'])}
|
389 |
|
390 |
+
### Potential Applications
|
391 |
{description['ml_applications']}
|
392 |
|
393 |
+
## Dataset Statistics
|
394 |
+
|
395 |
+
* Total Records: {stats['basic_stats']['total_records']:,}
|
396 |
+
* Total Features: {stats['basic_stats']['total_features']}
|
397 |
+
* Memory Usage: {stats['basic_stats']['memory_usage']}
|
398 |
+
|
399 |
## Dataset Schema
|
400 |
|
401 |
+
| Field | Type | Description |
|
402 |
+
| --- | --- | --- |
|
403 |
+
{chr(10).join(f"| {field} | {info['type']} | {info['description']} |" for field, info in openai_analysis['schema'].items())}
|
404 |
|
405 |
## Example Record
|
406 |
|
407 |
+
```json
|
408 |
+
{json.dumps(openai_analysis['example'], indent=2)}
|
409 |
+
```
|
410 |
|
411 |
## Data Distribution Analysis
|
412 |
|
413 |
+
The following visualizations show the distribution patterns and characteristics of key features in the dataset:
|
414 |
+
|
415 |
+
"""
|
416 |
+
|
417 |
+
# Add individual distribution plots with clean spacing
|
418 |
+
for col, img_str in distribution_plots.items():
|
419 |
+
readme_content += f"""### Distribution of {col}
|
420 |
+
<img src="data:image/png;base64,{img_str}" alt="Distribution of {col}" style="max-width: 800px;">
|
421 |
+
|
422 |
+
"""
|
423 |
+
|
424 |
+
# Add word clouds with clean spacing
|
425 |
+
if wordcloud_plots:
|
426 |
+
readme_content += "## Feature Word Clouds\n\n"
|
427 |
+
for col, img_str in wordcloud_plots.items():
|
428 |
+
readme_content += f"""### Word Cloud for {col}
|
429 |
+
<img src="data:image/png;base64,{img_str}" alt="Word Cloud for {col}" style="max-width: 800px;">
|
430 |
|
431 |
+
"""
|
|
|
432 |
|
433 |
+
# Add token statistics if available
|
434 |
+
if stats.get("token_stats") and stats["token_stats"]["total"] > 0:
|
435 |
+
readme_content += """## Token Statistics
|
436 |
|
437 |
+
"""
|
438 |
+
readme_content += f"* Total Tokens: {stats['token_stats']['total']:,}\n"
|
439 |
+
if stats["token_stats"].get("by_column"):
|
440 |
+
readme_content += "\n**Tokens by Column:**\n"
|
441 |
+
for col, count in stats["token_stats"]["by_column"].items():
|
442 |
+
readme_content += f"* {col}: {count:,}\n"
|
443 |
|
444 |
+
# Add citation section
|
445 |
+
clean_name = dataset_info["dataset_name"].replace("/", "_")
|
446 |
+
readme_content += f"""
|
447 |
+
## Citation
|
448 |
|
449 |
```bibtex
|
450 |
+
@dataset{{{clean_name},
|
451 |
title = {{{dataset_info['dataset_name']}}},
|
|
|
452 |
year = {{{datetime.datetime.now().year}}},
|
453 |
publisher = {{Hugging Face}},
|
|
|
454 |
url = {{https://huggingface.co/datasets/{dataset_info['dataset_name']}}}
|
455 |
}}
|
456 |
```
|
|
|
462 |
* 📚 Cite the dataset using the BibTeX entry above
|
463 |
* 🤝 Consider contributing improvements or reporting issues
|
464 |
* 💡 Share derivative works with the community when possible
|
465 |
+
"""
|
466 |
+
|
467 |
+
return readme_content
|
468 |
+
|
469 |
+
|
470 |
+
def get_size_category(record_count: int) -> str:
|
471 |
+
"""Determine the size category based on record count."""
|
472 |
+
if record_count < 1000:
|
473 |
+
return "n<1K"
|
474 |
+
elif record_count < 10000:
|
475 |
+
return "1K<n<10K"
|
476 |
+
elif record_count < 100000:
|
477 |
+
return "10K<n<100K"
|
478 |
+
elif record_count < 1000000:
|
479 |
+
return "100K<n<1M"
|
480 |
+
else:
|
481 |
+
return "n>1M"
|
482 |
+
|
483 |
+
|
484 |
+
def format_overview_section(analysis: dict, stats: dict) -> str:
|
485 |
+
"""Create a comprehensive overview section."""
|
486 |
+
description = analysis["description"]
|
487 |
+
overview = f"""
|
488 |
+
{description['overview']}
|
489 |
+
|
490 |
+
### Key Features and Characteristics
|
491 |
+
{chr(10).join(f'* {feature}' for feature in description['key_features'])}
|
492 |
+
|
493 |
+
### Potential Applications
|
494 |
+
{description['ml_applications']}
|
495 |
+
|
496 |
+
### Dataset Size
|
497 |
+
* Total Records: {stats['basic_stats']['total_records']:,}
|
498 |
+
* Total Features: {stats['basic_stats']['total_features']}
|
499 |
+
* Memory Usage: {stats['basic_stats']['memory_usage']}
|
500 |
+
"""
|
501 |
+
return overview.strip()
|
502 |
+
|
503 |
+
|
504 |
+
def format_schema_section(schema: dict, df: pd.DataFrame) -> str:
|
505 |
+
"""Generate an enhanced schema section with statistics."""
|
506 |
+
# Table header
|
507 |
+
table = "| Field | Type | Description | Non-Null Count | Unique Values |\n"
|
508 |
+
table += "| --- | --- | --- | --- | --- |\n"
|
509 |
+
|
510 |
+
# Generate rows with additional statistics
|
511 |
+
for field, info in schema.items():
|
512 |
+
try:
|
513 |
+
non_null = df[field].count()
|
514 |
+
unique = df[field].nunique()
|
515 |
+
row = f"| {field} | {info['type']} | {info['description']} | {non_null:,} | {unique:,} |"
|
516 |
+
table += row + "\n"
|
517 |
+
except Exception as e:
|
518 |
+
print(f"Error processing field {field}: {e}")
|
519 |
+
continue
|
520 |
+
|
521 |
+
return table
|
522 |
+
|
523 |
+
|
524 |
+
def format_visualization_section(
|
525 |
+
distribution_plots: dict, wordcloud_plots: dict
|
526 |
+
) -> str:
|
527 |
+
"""Format the visualization section with improved layout."""
|
528 |
+
content = (
|
529 |
+
"""The following visualizations show key characteristics of the dataset:\n\n"""
|
530 |
+
)
|
531 |
+
|
532 |
+
# Add distribution plots
|
533 |
+
if distribution_plots:
|
534 |
+
content += "### Distribution Plots\n\n"
|
535 |
+
content += '<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(500px, 1fr)); gap: 20px;">\n'
|
536 |
+
for col, img_str in distribution_plots.items():
|
537 |
+
content += f"""<div>
|
538 |
+
<h4>Distribution of {col}</h4>
|
539 |
+
<img src="data:image/png;base64,{img_str}" style="width: 100%; height: auto;">
|
540 |
+
</div>\n"""
|
541 |
+
content += "</div>\n\n"
|
542 |
+
|
543 |
+
# Add word clouds
|
544 |
+
if wordcloud_plots:
|
545 |
+
content += "### Word Clouds\n\n"
|
546 |
+
content += '<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(400px, 1fr)); gap: 20px;">\n'
|
547 |
+
for col, img_str in wordcloud_plots.items():
|
548 |
+
content += f"""<div>
|
549 |
+
<h4>Word Cloud for {col}</h4>
|
550 |
+
<img src="data:image/png;base64,{img_str}" style="width: 100%; height: auto;">
|
551 |
+
</div>\n"""
|
552 |
+
content += "</div>\n"
|
553 |
+
|
554 |
+
return content
|
555 |
+
|
556 |
+
|
557 |
+
def generate_limitations_section(df: pd.DataFrame, analysis: dict) -> str:
|
558 |
+
"""Generate a section about dataset limitations and potential biases."""
|
559 |
+
limitations = [
|
560 |
+
"This dataset may not be representative of all possible scenarios or use cases.",
|
561 |
+
f"The dataset contains {len(df):,} records, which may limit its applicability to certain tasks.",
|
562 |
+
"There may be inherent biases in the data collection or annotation process.",
|
563 |
+
]
|
564 |
+
|
565 |
+
# Add warnings about missing values if present
|
566 |
+
missing_values = df.isnull().sum()
|
567 |
+
if missing_values.any():
|
568 |
+
limitations.append(
|
569 |
+
f"Some fields contain missing values: {', '.join(missing_values[missing_values > 0].index)}"
|
570 |
+
)
|
571 |
+
|
572 |
+
return f"""The following limitations and potential biases should be considered when using this dataset:
|
573 |
+
|
574 |
+
{chr(10).join(f'* {limitation}' for limitation in limitations)}
|
575 |
+
|
576 |
+
Please consider these limitations when using the dataset and validate results accordingly."""
|
577 |
+
|
578 |
+
|
579 |
+
def generate_usage_section(dataset_info: dict, analysis: dict) -> str:
|
580 |
+
"""Generate comprehensive usage guidelines."""
|
581 |
+
return f"""This dataset is released under the Apache 2.0 License. When using this dataset:
|
582 |
+
|
583 |
+
* 📚 Cite the dataset using the BibTeX entry provided below
|
584 |
+
* 🤝 Consider contributing improvements or reporting issues
|
585 |
+
* 💡 Share derivative works with the community when possible
|
586 |
+
* 🔍 Validate the dataset's suitability for your specific use case
|
587 |
+
* ⚠️ Be aware of the limitations and biases discussed above
|
588 |
+
* 📊 Consider the dataset size and computational requirements for your application
|
589 |
|
590 |
For questions or additional information, please visit the dataset repository on Hugging Face.
|
591 |
"""
|
592 |
|
593 |
+
|
594 |
+
def get_task_categories(df: pd.DataFrame, analysis: dict) -> list:
|
595 |
+
"""Infer potential task categories based on the data and analysis."""
|
596 |
+
categories = ["other"] # Default category
|
597 |
+
|
598 |
+
# Add more sophisticated task inference logic based on column names and content
|
599 |
+
text_columns = df.select_dtypes(include=["object"]).columns
|
600 |
+
numeric_columns = df.select_dtypes(include=["int64", "float64"]).columns
|
601 |
+
|
602 |
+
if len(text_columns) > 0:
|
603 |
+
categories.append("text-classification")
|
604 |
+
if len(numeric_columns) > 0:
|
605 |
+
categories.append("regression")
|
606 |
+
|
607 |
+
return list(set(categories)) # Remove duplicates
|
608 |
+
|
609 |
+
|
610 |
+
def clean_dataset_name(name: str) -> str:
|
611 |
+
"""Clean dataset name for citation."""
|
612 |
+
return name.replace("/", "_").replace("-", "_").lower()
|
613 |
|
614 |
|
615 |
def generate_schema_table(schema: dict) -> str:
|
|
|
627 |
return table
|
628 |
|
629 |
|
630 |
+
def format_stats_section(stats: dict) -> str:
|
631 |
+
"""Format the statistics section of the dataset card."""
|
632 |
+
content = """### Basic Statistics
|
633 |
+
"""
|
634 |
+
# Add basic stats
|
635 |
+
for key, value in stats["basic_stats"].items():
|
636 |
+
# Convert key from snake_case to Title Case
|
637 |
+
formatted_key = key.replace("_", " ").title()
|
638 |
+
content += f"* {formatted_key}: {value}\n"
|
639 |
+
|
640 |
+
# Add token statistics if available
|
641 |
+
if stats.get("token_stats") and stats["token_stats"]["total"] > 0:
|
642 |
+
content += "\n### Token Statistics\n"
|
643 |
+
content += f"* Total Tokens: {stats['token_stats']['total']:,}\n"
|
644 |
+
|
645 |
+
if stats["token_stats"].get("by_column"):
|
646 |
+
content += "\n**Tokens by Column:**\n"
|
647 |
+
for col, count in stats["token_stats"]["by_column"].items():
|
648 |
+
content += f"* {col}: {count:,}\n"
|
649 |
+
|
650 |
+
return content
|
651 |
+
|
652 |
+
|
653 |
def format_schema_item(field_name: str, field_info: dict, prefix: str = "") -> list:
|
654 |
"""Recursively format schema items for nested structures."""
|
655 |
rows = []
|
src/utils/visualization.py
CHANGED
@@ -1,25 +1,26 @@
|
|
1 |
-
import plotly.express as px
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
import pandas as pd
|
4 |
import base64
|
5 |
import io
|
|
|
6 |
|
7 |
-
|
8 |
import plotly.express as px
|
9 |
import plotly.graph_objects as go
|
10 |
-
|
11 |
-
import base64
|
12 |
-
import io
|
13 |
-
from collections import Counter
|
14 |
|
15 |
def flatten_list_column(data, column):
|
16 |
"""Flatten a column containing lists into individual values with counts."""
|
17 |
# Flatten the lists into individual items
|
18 |
-
flattened = [
|
|
|
|
|
|
|
|
|
|
|
19 |
# Count occurrences
|
20 |
value_counts = pd.Series(Counter(flattened))
|
21 |
return value_counts
|
22 |
|
|
|
23 |
def create_distribution_plot(data, column):
|
24 |
"""Create a beautiful distribution plot using Plotly and convert to image."""
|
25 |
try:
|
@@ -29,110 +30,127 @@ def create_distribution_plot(data, column):
|
|
29 |
value_counts = flatten_list_column(data, column)
|
30 |
else:
|
31 |
# Handle regular columns
|
32 |
-
if data[column].dtype in [
|
33 |
# Continuous data - use histogram
|
34 |
fig = go.Figure()
|
35 |
-
|
36 |
# Add histogram
|
37 |
-
fig.add_trace(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
)
|
45 |
-
)
|
46 |
-
|
47 |
else:
|
48 |
# Categorical data
|
49 |
value_counts = data[column].value_counts()
|
50 |
|
51 |
# For both list columns and categorical data
|
52 |
-
if
|
53 |
-
fig = go.Figure(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
# Common layout updates
|
63 |
fig.update_layout(
|
64 |
-
title=f
|
65 |
xaxis_title=column,
|
66 |
-
yaxis_title=
|
67 |
-
template=
|
68 |
margin=dict(t=50, l=50, r=50, b=50),
|
69 |
width=1200,
|
70 |
height=800,
|
71 |
-
showlegend=False
|
72 |
)
|
73 |
-
|
74 |
# Rotate x-axis labels if needed
|
75 |
-
if isinstance(data[column].iloc[0], list) or data[column].dtype not in [
|
|
|
|
|
|
|
76 |
fig.update_layout(xaxis_tickangle=-45)
|
77 |
-
|
78 |
# Convert to PNG
|
79 |
img_bytes = fig.to_image(format="png", scale=2.0)
|
80 |
-
|
81 |
# Encode to base64
|
82 |
img_base64 = base64.b64encode(img_bytes).decode()
|
83 |
-
|
84 |
return img_base64
|
85 |
-
|
86 |
except Exception as e:
|
87 |
print(f"Error creating distribution plot for {column}: {str(e)}")
|
88 |
raise e
|
89 |
|
|
|
90 |
def create_wordcloud(data, column):
|
91 |
"""Create a word cloud visualization."""
|
92 |
-
from wordcloud import WordCloud
|
93 |
import matplotlib.pyplot as plt
|
94 |
-
|
|
|
95 |
try:
|
96 |
# Handle list columns
|
97 |
if isinstance(data[column].iloc[0], list):
|
98 |
-
text =
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
else:
|
100 |
# Handle regular columns
|
101 |
-
text =
|
102 |
-
|
103 |
wordcloud = WordCloud(
|
104 |
width=1200,
|
105 |
height=800,
|
106 |
-
background_color=
|
107 |
-
colormap=
|
108 |
-
max_words=100
|
109 |
).generate(text)
|
110 |
-
|
111 |
# Create matplotlib figure
|
112 |
plt.figure(figsize=(10, 5))
|
113 |
-
plt.imshow(wordcloud, interpolation=
|
114 |
-
plt.axis(
|
115 |
-
plt.title(f
|
116 |
-
|
117 |
# Save to bytes
|
118 |
buf = io.BytesIO()
|
119 |
-
plt.savefig(buf, format=
|
120 |
plt.close()
|
121 |
buf.seek(0)
|
122 |
-
|
123 |
# Convert to base64
|
124 |
img_base64 = base64.b64encode(buf.getvalue()).decode()
|
125 |
-
|
126 |
return img_base64
|
127 |
-
|
128 |
except Exception as e:
|
129 |
print(f"Error creating word cloud for {column}: {str(e)}")
|
130 |
raise e
|
131 |
|
|
|
132 |
def create_wordcloud(data, column):
|
133 |
"""Create a word cloud visualization."""
|
134 |
-
from wordcloud import WordCloud
|
135 |
import matplotlib.pyplot as plt
|
|
|
136 |
|
137 |
# Generate word cloud
|
138 |
text = " ".join(data[column].astype(str))
|
|
|
|
|
|
|
|
|
1 |
import base64
|
2 |
import io
|
3 |
+
from collections import Counter
|
4 |
|
5 |
+
import pandas as pd
|
6 |
import plotly.express as px
|
7 |
import plotly.graph_objects as go
|
8 |
+
|
|
|
|
|
|
|
9 |
|
10 |
def flatten_list_column(data, column):
|
11 |
"""Flatten a column containing lists into individual values with counts."""
|
12 |
# Flatten the lists into individual items
|
13 |
+
flattened = [
|
14 |
+
item
|
15 |
+
for sublist in data[column]
|
16 |
+
if isinstance(sublist, list)
|
17 |
+
for item in sublist
|
18 |
+
]
|
19 |
# Count occurrences
|
20 |
value_counts = pd.Series(Counter(flattened))
|
21 |
return value_counts
|
22 |
|
23 |
+
|
24 |
def create_distribution_plot(data, column):
|
25 |
"""Create a beautiful distribution plot using Plotly and convert to image."""
|
26 |
try:
|
|
|
30 |
value_counts = flatten_list_column(data, column)
|
31 |
else:
|
32 |
# Handle regular columns
|
33 |
+
if data[column].dtype in ["int64", "float64"]:
|
34 |
# Continuous data - use histogram
|
35 |
fig = go.Figure()
|
36 |
+
|
37 |
# Add histogram
|
38 |
+
fig.add_trace(
|
39 |
+
go.Histogram(
|
40 |
+
x=data[column],
|
41 |
+
name="Count",
|
42 |
+
nbinsx=30,
|
43 |
+
marker=dict(
|
44 |
+
color="rgba(110, 68, 255, 0.7)",
|
45 |
+
line=dict(color="rgba(184, 146, 255, 1)", width=1),
|
46 |
+
),
|
47 |
)
|
48 |
+
)
|
49 |
+
|
50 |
else:
|
51 |
# Categorical data
|
52 |
value_counts = data[column].value_counts()
|
53 |
|
54 |
# For both list columns and categorical data
|
55 |
+
if "value_counts" in locals():
|
56 |
+
fig = go.Figure(
|
57 |
+
[
|
58 |
+
go.Bar(
|
59 |
+
x=value_counts.index,
|
60 |
+
y=value_counts.values,
|
61 |
+
marker=dict(
|
62 |
+
color=value_counts.values,
|
63 |
+
colorscale=px.colors.sequential.Plotly3,
|
64 |
+
),
|
65 |
+
)
|
66 |
+
]
|
67 |
+
)
|
68 |
+
|
69 |
# Common layout updates
|
70 |
fig.update_layout(
|
71 |
+
title=f"Distribution of {column}",
|
72 |
xaxis_title=column,
|
73 |
+
yaxis_title="Count",
|
74 |
+
template="plotly_white",
|
75 |
margin=dict(t=50, l=50, r=50, b=50),
|
76 |
width=1200,
|
77 |
height=800,
|
78 |
+
showlegend=False,
|
79 |
)
|
80 |
+
|
81 |
# Rotate x-axis labels if needed
|
82 |
+
if isinstance(data[column].iloc[0], list) or data[column].dtype not in [
|
83 |
+
"int64",
|
84 |
+
"float64",
|
85 |
+
]:
|
86 |
fig.update_layout(xaxis_tickangle=-45)
|
87 |
+
|
88 |
# Convert to PNG
|
89 |
img_bytes = fig.to_image(format="png", scale=2.0)
|
90 |
+
|
91 |
# Encode to base64
|
92 |
img_base64 = base64.b64encode(img_bytes).decode()
|
93 |
+
|
94 |
return img_base64
|
95 |
+
|
96 |
except Exception as e:
|
97 |
print(f"Error creating distribution plot for {column}: {str(e)}")
|
98 |
raise e
|
99 |
|
100 |
+
|
101 |
def create_wordcloud(data, column):
|
102 |
"""Create a word cloud visualization."""
|
|
|
103 |
import matplotlib.pyplot as plt
|
104 |
+
from wordcloud import WordCloud
|
105 |
+
|
106 |
try:
|
107 |
# Handle list columns
|
108 |
if isinstance(data[column].iloc[0], list):
|
109 |
+
text = " ".join(
|
110 |
+
[
|
111 |
+
" ".join(map(str, sublist))
|
112 |
+
for sublist in data[column]
|
113 |
+
if isinstance(sublist, list)
|
114 |
+
]
|
115 |
+
)
|
116 |
else:
|
117 |
# Handle regular columns
|
118 |
+
text = " ".join(data[column].astype(str))
|
119 |
+
|
120 |
wordcloud = WordCloud(
|
121 |
width=1200,
|
122 |
height=800,
|
123 |
+
background_color="white",
|
124 |
+
colormap="plasma",
|
125 |
+
max_words=100,
|
126 |
).generate(text)
|
127 |
+
|
128 |
# Create matplotlib figure
|
129 |
plt.figure(figsize=(10, 5))
|
130 |
+
plt.imshow(wordcloud, interpolation="bilinear")
|
131 |
+
plt.axis("off")
|
132 |
+
plt.title(f"Word Cloud for {column}")
|
133 |
+
|
134 |
# Save to bytes
|
135 |
buf = io.BytesIO()
|
136 |
+
plt.savefig(buf, format="png", bbox_inches="tight", dpi=300)
|
137 |
plt.close()
|
138 |
buf.seek(0)
|
139 |
+
|
140 |
# Convert to base64
|
141 |
img_base64 = base64.b64encode(buf.getvalue()).decode()
|
142 |
+
|
143 |
return img_base64
|
144 |
+
|
145 |
except Exception as e:
|
146 |
print(f"Error creating word cloud for {column}: {str(e)}")
|
147 |
raise e
|
148 |
|
149 |
+
|
150 |
def create_wordcloud(data, column):
|
151 |
"""Create a word cloud visualization."""
|
|
|
152 |
import matplotlib.pyplot as plt
|
153 |
+
from wordcloud import WordCloud
|
154 |
|
155 |
# Generate word cloud
|
156 |
text = " ".join(data[column].astype(str))
|