Spaces:
Running
Running
File size: 5,033 Bytes
d8d37b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Token Classification - Hugging Face Transformers.js</title>
<script type="module">
// Import the library
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.4';
// Make it available globally
window.pipeline = pipeline;
</script>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css" rel="stylesheet">
<link rel="stylesheet" href="css/styles.css">
</head>
<body>
<div class="container-main">
<!-- Page Header -->
<div class="header">
<div class="header-logo">
<img src="images/logo.png" alt="logo">
</div>
<div class="header-main-text">
<h1>Hugging Face Transformers.js</h1>
</div>
<div class="header-sub-text">
<h3>Free AI Models for JavaScript Web Development</h3>
</div>
</div>
<hr> <!-- Separator -->
<!-- Back to Home button -->
<div class="row mt-5">
<div class="col-md-12 text-center">
<a href="index.html" class="btn btn-outline-secondary"
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
</div>
</div>
<!-- Content -->
<div class="container mt-5">
<!-- Centered Titles -->
<div class="text-center">
<h2>Natural Language Processing</h2>
<h4>Token Classification (Named Entity Recognition)</h4>
</div>
<!-- Actual Content of this page -->
<div id="token-classification-container" class="container mt-4">
<h5>Perform Named Entity Recognition with Xenova/bert-base-NER:</h5>
<div class="d-flex align-items-center">
<label for="tokenClassificationText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Text to Recognize:</label>
<input type="text" class="form-control flex-grow-1" id="tokenClassificationText"
value="My name is Sarah and I live in London" placeholder="Enter text"
style="margin-right: 15px; margin-left: 15px;">
<button id="classifyButton" class="btn btn-primary" onclick="analyzeText()">analyze</button>
</div>
<div class="mt-4">
<h4>Output:</h4>
<pre id="outputArea"></pre>
</div>
</div>
<hr> <!-- Line Separator -->
<div id="token-classification-container2" class="container mt-4">
<h5>Perform Named Entity Recognition with Xenova/bert-base-NER (Return all Labels):</h5>
<div class="d-flex align-items-center">
<label for="tokenClassificationText2" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Text to Recognize:</label>
<input type="text" class="form-control flex-grow-1" id="tokenClassificationText2"
value="Sarah lives in the United States of America" placeholder="Enter text"
style="margin-right: 15px; margin-left: 15px;">
<button id="classifyButton2" class="btn btn-primary" onclick="analyzeText2()">analyze</button>
</div>
<div class="mt-4">
<h4>Output:</h4>
<pre id="outputArea2"></pre>
</div>
</div>
<!-- Back to Home button -->
<div class="row mt-5">
<div class="col-md-12 text-center">
<a href="index.html" class="btn btn-outline-secondary"
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
</div>
</div>
</div>
</div>
<script>
let classifier;
// Initialize the sentiment analysis model
async function initializeModel() {
classifier = await pipeline('token-classification', 'Xenova/bert-base-NER');
}
async function analyzeText() {
const textFieldValue = document.getElementById("tokenClassificationText").value.trim();
const result = await classifier(textFieldValue);
document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2);
}
async function analyzeText2() {
const textFieldValue = document.getElementById("tokenClassificationText2").value.trim();
const result = await classifier(textFieldValue, { ignore_labels: [] });
document.getElementById("outputArea2").innerText = JSON.stringify(result, null, 2);
}
// Initialize the model after the DOM is completely loaded
window.addEventListener("DOMContentLoaded", initializeModel);
</script>
</body>
</html> |