feat: add pages
Browse files
app.py
CHANGED
@@ -1,16 +1,28 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from lib.utils.model import get_model, get_similarities
|
3 |
-
from PIL import Image
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
st.header('Inputs')
|
10 |
caption = st.text_input('Description Input')
|
11 |
|
12 |
images = st.file_uploader('Upload images', accept_multiple_files=True)
|
13 |
if images is not None:
|
|
|
14 |
st.image(images) # type: ignore
|
15 |
|
16 |
st.header('Options')
|
@@ -32,12 +44,27 @@ if button:
|
|
32 |
|
33 |
indices = similarities.argsort(descending=True).cpu().tolist()[:ranks]
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
for i, idx in enumerate(indices):
|
36 |
c1, c2, c3 = st.columns(3)
|
37 |
with c1:
|
38 |
-
st.text(f'
|
39 |
with c2:
|
40 |
st.image(images[idx])
|
41 |
with c3:
|
42 |
-
st.text(f'
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from st_pages import Page, show_pages, add_page_title, Section
|
3 |
from lib.utils.model import get_model, get_similarities
|
|
|
4 |
|
5 |
+
add_page_title()
|
6 |
+
|
7 |
+
show_pages(
|
8 |
+
[
|
9 |
+
Page('app.py', 'IRRA Text-To-Image-Retrival'),
|
10 |
+
Section('Implementation Details'),
|
11 |
+
Page('pages/losses.py', 'Loss functions'),
|
12 |
+
]
|
13 |
+
)
|
14 |
+
|
15 |
+
st.markdown('''
|
16 |
+
A text-to-image retrieval model implemented from [arXiv: Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval](https://arxiv.org/abs/2303.12501).
|
17 |
+
The uploaded images should be `384x128` with only one person in the shot.
|
18 |
+
''')
|
19 |
|
20 |
st.header('Inputs')
|
21 |
caption = st.text_input('Description Input')
|
22 |
|
23 |
images = st.file_uploader('Upload images', accept_multiple_files=True)
|
24 |
if images is not None:
|
25 |
+
|
26 |
st.image(images) # type: ignore
|
27 |
|
28 |
st.header('Options')
|
|
|
44 |
|
45 |
indices = similarities.argsort(descending=True).cpu().tolist()[:ranks]
|
46 |
|
47 |
+
c1, c2, c3 = st.columns(3)
|
48 |
+
with c1:
|
49 |
+
st.subheader('Rank')
|
50 |
+
with c2:
|
51 |
+
st.subheader('Image')
|
52 |
+
with c3:
|
53 |
+
st.subheader('Cosine Similarity', help='Due to the nature of the SDM loss, the higher the similarity, the more similar the match is')
|
54 |
+
|
55 |
for i, idx in enumerate(indices):
|
56 |
c1, c2, c3 = st.columns(3)
|
57 |
with c1:
|
58 |
+
st.text(f'{i + 1}')
|
59 |
with c2:
|
60 |
st.image(images[idx])
|
61 |
with c3:
|
62 |
+
st.text(f'{similarities[idx].cpu():.2f}')
|
63 |
+
|
64 |
+
with st.sidebar:
|
65 |
+
st.title('IRRA Text-To-Image Retrival')
|
66 |
+
|
67 |
+
st.subheader('Useful Links')
|
68 |
+
st.markdown('[arXiv: Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval](https://arxiv.org/abs/2303.12501)')
|
69 |
+
st.markdown('[IRRA implementation (Pytorch Lightning + Transformers)](https://github.com/grostaco/modern-IRRA)')
|
70 |
+
st.markdown('[IRRA implementation (PyTorch)](https://github.com/anosorae/IRRA/tree/main)')
|