File size: 13,936 Bytes
9652fe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import re
import os
import bm25s
import spaces
import gradio as gr
import gradio_iframe
from bm25s.hf import BM25HF
from rerankers import Reranker
from inseq import register_step_function, load_model
from inseq.attr import StepFunctionArgs
from inseq.commands.attribute_context import visualize_attribute_context
from inseq.utils.contrast_utils import _setup_contrast_args
from lxt.models.llama import LlamaForCausalLM, attnlrp
from transformers import AutoTokenizer
from lxt.functional import softmax, add2, mul2
from inseq.commands.attribute_context.attribute_context import attribute_context_with_model, AttributeContextArgs
from style import custom_css
from citations import pecore_citation, mirage_citation, inseq_citation, lxt_citation
from examples import examples
model_id = "HuggingFaceTB/SmolLM-360M-Instruct"
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
retriever = BM25HF.load_from_hub("xhluca/bm25s-nq-index", load_corpus=True, mmap=True)
hf_model = LlamaForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
attnlrp.register(hf_model)
model = load_model(hf_model, "saliency", tokenizer=tokenizer)
# Needed since the <|im_start|> token is also the BOS
model.bos_token = "<|endoftext|>"
model.bos_token_id = 0
def lxt_probability_fn(args: StepFunctionArgs):
logits = args.attribution_model.output2logits(args.forward_output)
target_ids = args.target_ids.reshape(logits.shape[0], 1).to(logits.device)
logits = softmax(logits, dim=-1)
return logits.gather(-1, target_ids).squeeze(-1)
def lxt_contrast_prob_fn(
args: StepFunctionArgs,
contrast_sources = None,
contrast_targets = None,
contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
contrast_force_inputs: bool = False,
skip_special_tokens: bool = False,
):
c_args = _setup_contrast_args(
args,
contrast_sources=contrast_sources,
contrast_targets=contrast_targets,
contrast_targets_alignments=contrast_targets_alignments,
contrast_force_inputs=contrast_force_inputs,
skip_special_tokens=skip_special_tokens,
)
return lxt_probability_fn(c_args)
def lxt_contrast_prob_diff_fn(
args: StepFunctionArgs,
contrast_sources = None,
contrast_targets = None,
contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
contrast_force_inputs: bool = False,
skip_special_tokens: bool = False,
):
model_probs = lxt_probability_fn(args)
contrast_probs = lxt_contrast_prob_fn(
args=args,
contrast_sources=contrast_sources,
contrast_targets=contrast_targets,
contrast_targets_alignments=contrast_targets_alignments,
contrast_force_inputs=contrast_force_inputs,
skip_special_tokens=skip_special_tokens,
).to(model_probs.device)
return add2(model_probs, mul2(contrast_probs, -1))
def set_interactive_settings(rag_setting, retrieve_k, top_k, custom_context):
if rag_setting in ("Retrieve with BM25", "Rerank with ColBERT"):
return gr.Slider(interactive=True), gr.Slider(interactive=True), gr.Textbox(placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.", interactive=False)
elif rag_setting == "Use Custom Context":
return gr.Slider(interactive=False), gr.Slider(interactive=False), gr.Textbox(placeholder="Insert a custom context...", interactive=True)
@spaces.GPU()
def generate(query, max_new_tokens, top_p, temperature, retrieve_k, top_k, rag_setting, custom_context, model_size, progress=gr.Progress()):
global model, model_id
if rag_setting == "Use Custom Context":
docs = custom_context.split("\n\n")
progress(0.1, desc="Using custom context...")
else:
if not query:
raise gr.Error("Please enter a query.")
progress(0, desc="Retrieving with BM25...")
q = bm25s.tokenize(query)
results = retriever.retrieve(q, k=retrieve_k)
if rag_setting == "Rerank with ColBERT":
progress(0.1, desc="Reranking with ColBERT...")
docs = [x["text"] for x in results.documents[0]]
out = ranker.rank(query=query, docs=docs)
docs = [out.results[i].document.text for i in range(top_k)]
else:
docs = [results.documents[0][i]["text"] for i in range(top_k)]
docs = [re.sub(r"\[\d+\]", "", doc) for doc in docs]
curr_model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
if model is None or model.model_name != curr_model_id:
progress(0.2, desc="Loading model...")
model_id = curr_model_id
hf_model = LlamaForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
attnlrp.register(hf_model)
model = load_model(hf_model, "saliency", tokenizer=tokenizer)
progress(0.3, desc="Attributing with LXT...")
lm_rag_prompting_example = AttributeContextArgs(
model_name_or_path=model_id,
input_context_text="\n\n".join(docs),
input_current_text=query,
output_template="{current}",
attributed_fn="lxt_contrast_prob_diff",
input_template="<|im_start|>user\n### Context\n{context}\n\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n",
contextless_input_current_text="<|im_start|>user\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n",
attribution_method="saliency",
show_viz=False,
show_intermediate_outputs=False,
context_sensitivity_std_threshold=1,
decoder_input_output_separator=" ",
special_tokens_to_keep=["<|im_start|>", "<|endoftext|>"],
generation_kwargs={"max_new_tokens": max_new_tokens, "top_p": top_p, "temperature": temperature},
attribution_aggregators=["sum"],
rescale_attributions=True,
save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
)
out = attribute_context_with_model(lm_rag_prompting_example, model)
html = visualize_attribute_context(out, show_viz=False, return_html=True)
return [
gradio_iframe.iFrame(html, height=500, visible=True),
gr.DownloadButton(
label="π Download output",
value=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
visible=True,
),
gr.DownloadButton(
label="π Download HTML",
value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
visible=True,
)
]
register_step_function(lxt_contrast_prob_diff_fn, "lxt_contrast_prob_diff", overwrite=True)
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
with gr.Column(min_width=500):
gr.HTML(f'<h1><img src="file/img/mirage_logo_white_contour.png" width=300px /></h1>')
text = gr.Markdown(
"This demo showcases an end-to-end usage of model internals for RAG answer attribution with the <a href='https://openreview.net/forum?id=XTHfNGI3zT' target='_blank'>PECoRe</a> framework, as described in our <a href='https://arxiv.org/abs/2406.13663' target='_blank'>MIRAGE</a> paper.<br>"
"Insert a query to retrieve relevant contexts, generate an answer and attribute its context-sensitive components. An interactive <a href='https://github.com/google-deepmind/treescope' target='_blank'>Treescope</a> visualization will appear in the green square.<br>"
"π <i>Retrieval is performed on <a href='https://huggingface.co/datasets/google-research-datasets/natural_questions' target='_blank'>Natural Questions</a> using <a href='https://github.com/xhluca/bm25s' target='_blank'>BM25S</a>, with optional reranking via <a href='https://huggingface.co/answerdotai/answerai-colbert-small-v1' target='_blank'>ColBERT</a>."
" <a href='https://huggingface.co/blog/smollm' target='_blank'>SmolLM</a> models are used for generation, while <a href='https://github.com/inseq-team/inseq' target='_blank'>Inseq</a> and <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'>LXT</a> are used for attribution.</i><br>"
"β‘οΈ <i>For more details, see also our <a href='https://huggingface.co/spaces/gsarti/pecore' target='_blank'>PECoRe Demo</a>",
)
with gr.Row():
with gr.Column():
query = gr.Textbox(
placeholder="Insert a query for the language model...",
label="Model query",
interactive=True,
lines=2,
)
attribute_input_examples = gr.Examples(
examples,
inputs=[query],
examples_per_page=2,
)
with gr.Accordion("βοΈ Parameters", open=False):
with gr.Row():
model_size = gr.Radio(
["135M", "360M", "1.7B"],
value="360M",
label="Model size",
interactive=True
)
with gr.Row():
rag_setting = gr.Radio(
["Retrieve with BM25", "Rerank with ColBERT", "Use Custom Context"],
value="Rerank with ColBERT",
label="Mode",
interactive=True
)
with gr.Row():
retrieve_k = gr.Slider(1, 500, value=100, step=1, label="# Docs to Retrieve", interactive=True)
top_k = gr.Slider(1, 10, value=3, step=1, label="# Docs in Context", interactive=True)
custom_context = gr.Textbox(
placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
label="Custom context",
interactive=False,
lines=4,
)
with gr.Row():
max_new_tokens = gr.Slider(0, 500, value=50, step=5.0, label="Max new tokens", interactive=True)
top_p = gr.Slider(0, 1, value=1, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0, step=0.01, label="Temperature", interactive=True)
with gr.Accordion("π Citation", open=False):
gr.Markdown("Using PECoRe for model internals-based RAG answer attribution is discussed in:")
gr.Code(mirage_citation, interactive=False, label="MIRAGE (Qi, Sarti et al., 2024)")
gr.Markdown("To refer to the original PECoRe paper, cite:")
gr.Code(pecore_citation, interactive=False, label="PECoRe (Sarti et al., 2024)")
gr.Markdown("The Inseq implementation used in this work (<a href=\"https://inseq.org/en/latest/main_classes/cli.html#attribute-context\"><code>inseq attribute-context</code></a>, including this demo) can be cited with:")
gr.Code(inseq_citation, interactive=False, label="Inseq (Sarti et al., 2023)")
gr.Markdown("The AttnLRP attribution method used in this demo via the LXT library can be cited with:")
gr.Code(lxt_citation, interactive=False, label="AttnLRP (Achtibat et al., 2024)")
btn = gr.Button("Submit", variant="primary")
with gr.Column():
attribute_context_out = gradio_iframe.iFrame(height=400, visible=True)
with gr.Row(equal_height=True):
download_output_file_button = gr.DownloadButton(
"π Download output",
visible=False,
)
download_output_html_button = gr.DownloadButton(
"π Download HTML",
visible=False,
value=os.path.join(
os.path.dirname(__file__), "outputs/output.html"
),
)
with gr.Row(elem_classes="footer-container"):
with gr.Column():
gr.Markdown("""<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a> <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'><img src="file/img/lxt_logo.png" width=150px /></a></div>""")
with gr.Column():
with gr.Row(elem_classes="footer-custom-block"):
with gr.Column(scale=0.30, min_width=150):
gr.Markdown("""<b>Built by <a href="https://gsarti.com" target="_blank">Gabriele Sarti</a><br> with the support of</b>""")
with gr.Column(scale=0.30, min_width=120):
gr.Markdown("""<a href='https://www.rug.nl/research/clcg/research/cl/' target='_blank'><img src="file/img/rug_logo_white_contour.png" width=170px /></a>""")
with gr.Column(scale=0.30, min_width=120):
gr.Markdown("""<a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=100px /></a>""")
rag_setting.change(
fn=set_interactive_settings,
inputs=[rag_setting, retrieve_k, top_k, custom_context],
outputs=[retrieve_k, top_k, custom_context],
)
btn.click(
fn=generate,
inputs=[
query,
max_new_tokens,
top_p,
temperature,
retrieve_k,
top_k,
rag_setting,
custom_context,
model_size,
],
outputs=[
attribute_context_out,
download_output_file_button,
download_output_html_button,
]
)
demo.queue(api_open=False, max_size=20).launch(allowed_paths=["img/", "outputs/"], show_api=False) |