File size: 21,068 Bytes
cf3d1b1
 
 
fbd70bc
cf3d1b1
 
 
 
 
 
 
 
 
 
 
2b66ced
 
 
 
 
 
 
06bb18a
2b66ced
cf3d1b1
2b66ced
fbd70bc
2a644e6
fbd70bc
 
2b66ced
fbd70bc
2b66ced
 
 
fbd70bc
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b66ced
cf3d1b1
 
2b66ced
cf3d1b1
 
 
 
 
2b66ced
 
 
 
 
 
 
2a644e6
2b66ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf3d1b1
 
 
 
 
fbd70bc
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b66ced
cf3d1b1
 
2b66ced
 
 
fbd70bc
2b66ced
 
 
06bb18a
2b66ced
 
 
 
 
 
 
 
 
 
 
 
 
 
2a644e6
2b66ced
 
 
 
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
2b66ced
 
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b66ced
2a644e6
 
 
2b66ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06bb18a
2b66ced
 
2a644e6
2b66ced
 
 
 
 
 
 
 
 
 
06bb18a
 
 
 
 
 
 
 
cf3d1b1
 
2b66ced
 
 
 
 
 
 
 
 
 
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b66ced
cf3d1b1
 
 
 
 
2b66ced
cf3d1b1
 
 
 
 
 
 
2b66ced
 
 
 
 
 
 
cf3d1b1
 
2b66ced
 
 
 
 
 
 
 
 
 
 
 
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
2b66ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf3d1b1
 
 
 
 
2a644e6
 
 
 
 
 
 
 
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b66ced
cf3d1b1
 
2b66ced
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
2b66ced
 
2a644e6
2b66ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a644e6
 
2b66ced
 
 
2a644e6
 
2b66ced
 
 
 
 
 
 
 
2a644e6
 
2b66ced
 
 
2a644e6
 
2b66ced
 
 
 
 
 
 
 
 
2a644e6
 
2b66ced
 
 
 
 
 
 
06bb18a
 
 
 
 
 
 
 
 
 
 
 
2b66ced
2a644e6
2b66ced
cf3d1b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import json
import os

import gradio as gr
import spaces
from contents import (
    citation,
    description,
    examples,
    how_it_works,
    how_to_use,
    subtitle,
    title,
)
from gradio_highlightedtextbox import HighlightedTextbox
from presets import (
    set_chatml_preset,
    set_cora_preset,
    set_default_preset,
    set_mmt_preset,
    set_towerinstruct_preset,
    set_zephyr_preset,
    set_gemma_preset,
)
from style import custom_css
from utils import get_formatted_attribute_context_results

from inseq import list_feature_attribution_methods, list_step_functions
from inseq.commands.attribute_context.attribute_context import (
    AttributeContextArgs,
    attribute_context_with_model,
)
from inseq.models import HuggingfaceModel

loaded_model: HuggingfaceModel = None


@spaces.GPU()
def pecore(
    input_current_text: str,
    input_context_text: str,
    output_current_text: str,
    output_context_text: str,
    model_name_or_path: str,
    attribution_method: str,
    attributed_fn: str | None,
    context_sensitivity_metric: str,
    context_sensitivity_std_threshold: float,
    context_sensitivity_topk: int,
    attribution_std_threshold: float,
    attribution_topk: int,
    input_template: str,
    contextless_input_current_text: str,
    output_template: str,
    special_tokens_to_keep: str | list[str] | None,
    decoder_input_output_separator: str,
    model_kwargs: str,
    tokenizer_kwargs: str,
    generation_kwargs: str,
    attribution_kwargs: str,
):
    global loaded_model
    if "{context}" in output_template and not output_context_text:
        raise gr.Error(
            "Parameter 'Generated context' is required when using {context} in the output template."
        )
    if loaded_model is None or model_name_or_path != loaded_model.model_name:
        gr.Info("Loading model...")
        loaded_model = HuggingfaceModel.load(
            model_name_or_path,
            attribution_method,
            model_kwargs=json.loads(model_kwargs),
            tokenizer_kwargs=json.loads(tokenizer_kwargs),
        )
    kwargs = {}
    if context_sensitivity_topk > 0:
        kwargs["context_sensitivity_topk"] = context_sensitivity_topk
    if attribution_topk > 0:
        kwargs["attribution_topk"] = attribution_topk
    if input_context_text:
        kwargs["input_context_text"] = input_context_text
    if output_context_text:
        kwargs["output_context_text"] = output_context_text
    if output_current_text:
        kwargs["output_current_text"] = output_current_text
    if decoder_input_output_separator:
        kwargs["decoder_input_output_separator"] = decoder_input_output_separator
    pecore_args = AttributeContextArgs(
        show_intermediate_outputs=False,
        save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
        add_output_info=True,
        viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
        show_viz=False,
        model_name_or_path=model_name_or_path,
        attribution_method=attribution_method,
        attributed_fn=attributed_fn,
        attribution_selectors=None,
        attribution_aggregators=None,
        normalize_attributions=True,
        model_kwargs=json.loads(model_kwargs),
        tokenizer_kwargs=json.loads(tokenizer_kwargs),
        generation_kwargs=json.loads(generation_kwargs),
        attribution_kwargs=json.loads(attribution_kwargs),
        context_sensitivity_metric=context_sensitivity_metric,
        prompt_user_for_contextless_output_next_tokens=False,
        special_tokens_to_keep=special_tokens_to_keep,
        context_sensitivity_std_threshold=context_sensitivity_std_threshold,
        attribution_std_threshold=attribution_std_threshold,
        input_current_text=input_current_text,
        input_template=input_template,
        output_template=output_template,
        contextless_input_current_text=contextless_input_current_text,
        handle_output_context_strategy="pre",
        **kwargs,
    )
    out = attribute_context_with_model(pecore_args, loaded_model)
    tuples = get_formatted_attribute_context_results(loaded_model, out.info, out)
    if not tuples:
        msg = f"Output: {out.output_current}\nWarning: No pairs were found by PECoRe. Try adjusting Results Selection parameters."
        tuples = [(msg, None)]
    return tuples, gr.Button(visible=True), gr.Button(visible=True)


@spaces.GPU()
def preload_model(
    model_name_or_path: str,
    attribution_method: str,
    model_kwargs: str,
    tokenizer_kwargs: str,
):
    global loaded_model
    if loaded_model is None or model_name_or_path != loaded_model.model_name:
        gr.Info("Loading model...")
        loaded_model = HuggingfaceModel.load(
            model_name_or_path,
            attribution_method,
            model_kwargs=json.loads(model_kwargs),
            tokenizer_kwargs=json.loads(tokenizer_kwargs),
        )


with gr.Blocks(css=custom_css) as demo:
    gr.Markdown(title)
    gr.Markdown(subtitle)
    gr.Markdown(description)
    with gr.Tab("πŸ‘ Attributing Context"):
        with gr.Row():
            with gr.Column():
                input_context_text = gr.Textbox(
                    label="Input context", lines=4, placeholder="Your input context..."
                )
                input_current_text = gr.Textbox(
                    label="Input query", placeholder="Your input query..."
                )
                attribute_input_button = gr.Button("Submit", variant="primary")
            with gr.Column():
                pecore_output_highlights = HighlightedTextbox(
                    value=[
                        ("This output will contain ", None),
                        ("context sensitive", "Context sensitive"),
                        (" generated tokens and ", None),
                        ("influential context", "Influential context"),
                        (" tokens.", None),
                    ],
                    color_map={
                        "Context sensitive": "green",
                        "Influential context": "blue",
                    },
                    show_legend=True,
                    label="PECoRe Output",
                    combine_adjacent=True,
                    interactive=False,
                )
                with gr.Row(equal_height=True):
                    download_output_file_button = gr.Button(
                        "⇓ Download output",
                        visible=False,
                        link=os.path.join(
                            os.path.dirname(__file__), "/file=outputs/output.json"
                        ),
                    )
                    download_output_html_button = gr.Button(
                        "πŸ” Download HTML",
                        visible=False,
                        link=os.path.join(
                            os.path.dirname(__file__), "/file=outputs/output.html"
                        ),
                    )

        attribute_input_examples = gr.Examples(
            examples,
            inputs=[input_current_text, input_context_text],
            outputs=pecore_output_highlights,
        )
    with gr.Tab("βš™οΈ Parameters") as params_tab:
        gr.Markdown(
            "## ✨ Presets\nSelect a preset to load default parameters into the fields below."
        )
        with gr.Row(equal_height=True):
            with gr.Column():
                default_preset = gr.Button("Default", variant="secondary")
                gr.Markdown(
                    "Default preset using templates without special tokens or parameters.\nCan be used with most decoder-only and encoder-decoder models."
                )
            with gr.Column():
                cora_preset = gr.Button("CORA mQA", variant="secondary")
                gr.Markdown(
                    "Preset for the <a href='https://huggingface.co/gsarti/cora_mgen' target='_blank'>CORA Multilingual QA</a> model.\nUses special templates for inputs."
                )
            with gr.Column():
                zephyr_preset = gr.Button("Zephyr Template", variant="secondary")
                gr.Markdown(
                    "Preset for models using the <a href='https://huggingface.co/HuggingFaceH4/zephyr-7b-beta' target='_blank'>Zephyr conversational template</a>.\nUses <code><|system|></code>, <code><|user|></code> and <code><|assistant|></code> special tokens."
                )
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                multilingual_mt_template = gr.Button(
                    "Multilingual MT", variant="secondary"
                )
                gr.Markdown(
                    "Preset for multilingual MT models such as <a href='https://huggingface.co/facebook/nllb-200-distilled-600M' target='_blank'>NLLB</a> and <a href='https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt' target='_blank'>mBART</a> using language tags."
                )
            with gr.Column(scale=1):
                chatml_template = gr.Button("Qwen ChatML", variant="secondary")
                gr.Markdown(
                    "Preset for models using the <a href='https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md' target='_blank'>ChatML conversational template</a>.\nUses <code><|im_start|></code>, <code><|im_end|></code> special tokens."
                )
            with gr.Column(scale=1):
                towerinstruct_template = gr.Button(
                    "Unbabel TowerInstruct", variant="secondary"
                )
                gr.Markdown(
                    "Preset for models using the <a href='https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1' target='_blank'>Unbabel TowerInstruct</a> conversational template.\nUses <code><|im_start|></code>, <code><|im_end|></code> special tokens."
                )
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                gemma_template = gr.Button(
                    "Gemma Chat Template", variant="secondary"
                )
                gr.Markdown(
                    "Preset for <a href='https://huggingface.co/google/gemma-2b-it' target='_blank'>Gemma</a> instruction-tuned models."
                )
        gr.Markdown("## βš™οΈ PECoRe Parameters")
        with gr.Row(equal_height=True):
            with gr.Column():
                model_name_or_path = gr.Textbox(
                    value="gpt2",
                    label="Model",
                    info="Hugging Face Hub identifier of the model to analyze with PECoRe.",
                    interactive=True,
                )
                load_model_button = gr.Button(
                    "Load model",
                    variant="secondary",
                )
            context_sensitivity_metric = gr.Dropdown(
                value="kl_divergence",
                label="Context sensitivity metric",
                info="Metric to use to measure context sensitivity of generated tokens.",
                choices=list_step_functions(),
                interactive=True,
            )
            attribution_method = gr.Dropdown(
                value="saliency",
                label="Attribution method",
                info="Attribution method identifier to identify relevant context tokens.",
                choices=list_feature_attribution_methods(),
                interactive=True,
            )
            attributed_fn = gr.Dropdown(
                value="contrast_prob_diff",
                label="Attributed function",
                info="Function of model logits to use as target for the attribution method.",
                choices=list_step_functions(),
                interactive=True,
            )
        gr.Markdown("#### Results Selection Parameters")
        with gr.Row(equal_height=True):
            context_sensitivity_std_threshold = gr.Number(
                value=1.0,
                label="Context sensitivity threshold",
                info="Select N to keep context sensitive tokens with scores above N * std. 0 = above mean.",
                precision=1,
                minimum=0.0,
                maximum=5.0,
                step=0.5,
                interactive=True,
            )
            context_sensitivity_topk = gr.Number(
                value=0,
                label="Context sensitivity top-k",
                info="Select N to keep top N context sensitive tokens. 0 = keep all.",
                interactive=True,
                precision=0,
                minimum=0,
                maximum=10,
            )
            attribution_std_threshold = gr.Number(
                value=1.0,
                label="Attribution threshold",
                info="Select N to keep attributed tokens with scores above N * std. 0 = above mean.",
                precision=1,
                minimum=0.0,
                maximum=5.0,
                step=0.5,
                interactive=True,
            )
            attribution_topk = gr.Number(
                value=0,
                label="Attribution top-k",
                info="Select N to keep top N attributed tokens in the context. 0 = keep all.",
                interactive=True,
                precision=0,
                minimum=0,
                maximum=50,
            )

        gr.Markdown("#### Text Format Parameters")
        with gr.Row(equal_height=True):
            input_template = gr.Textbox(
                value="{current} <P>:{context}",
                label="Input template",
                info="Template to format the input for the model. Use {current} and {context} placeholders.",
                interactive=True,
            )
            output_template = gr.Textbox(
                value="{current}",
                label="Output template",
                info="Template to format the output from the model. Use {current} and {context} placeholders.",
                interactive=True,
            )
            contextless_input_current_text = gr.Textbox(
                value="<Q>:{current}",
                label="Input current text template",
                info="Template to format the input query for the model. Use {current} placeholder.",
                interactive=True,
            )
        with gr.Row(equal_height=True):
            special_tokens_to_keep = gr.Dropdown(
                label="Special tokens to keep",
                info="Special tokens to keep in the attribution. If empty, all special tokens are ignored.",
                value=None,
                multiselect=True,
                allow_custom_value=True,
            )
            decoder_input_output_separator = gr.Textbox(
                label="Decoder input/output separator",
                info="Separator to use between input and output in the decoder input.",
                value="",
                interactive=True,
                lines=1,
            )

        gr.Markdown("## βš™οΈ Generation Parameters")
        with gr.Row(equal_height=True):
            with gr.Column(scale=0.5):
                gr.Markdown(
                    "The following arguments can be used to control generation parameters and force specific model outputs."
                )
            with gr.Column(scale=1):
                generation_kwargs = gr.Code(
                    value="{}",
                    language="json",
                    label="Generation kwargs (JSON)",
                    interactive=True,
                    lines=1,
                )
        with gr.Row(equal_height=True):
            output_current_text = gr.Textbox(
                label="Generation output",
                info="Specifies an output to force-decoded during generation. If blank, the model will generate freely.",
                interactive=True,
            )
            output_context_text = gr.Textbox(
                label="Generation context",
                info="If specified, this context is used as starting point for generation. Useful for e.g. chain-of-thought reasoning.",
                interactive=True,
            )
        gr.Markdown("## βš™οΈ Other Parameters")
        with gr.Row(equal_height=True):
            with gr.Column():
                gr.Markdown(
                    "The following arguments will be passed to initialize the Hugging Face model and tokenizer, and to the `inseq_model.attribute` method."
                )
            with gr.Column():
                model_kwargs = gr.Code(
                    value="{}",
                    language="json",
                    label="Model kwargs (JSON)",
                    interactive=True,
                    lines=1,
                    min_width=160,
                )
            with gr.Column():
                tokenizer_kwargs = gr.Code(
                    value="{}",
                    language="json",
                    label="Tokenizer kwargs (JSON)",
                    interactive=True,
                    lines=1,
                )
            with gr.Column():
                attribution_kwargs = gr.Code(
                    value="{}",
                    language="json",
                    label="Attribution kwargs (JSON)",
                    interactive=True,
                    lines=1,
                )

    gr.Markdown(how_it_works)
    gr.Markdown(how_to_use)
    gr.Markdown(citation)

    # Main logic

    load_model_args = [
        model_name_or_path,
        attribution_method,
        model_kwargs,
        tokenizer_kwargs,
    ]

    attribute_input_button.click(
        pecore,
        inputs=[
            input_current_text,
            input_context_text,
            output_current_text,
            output_context_text,
            model_name_or_path,
            attribution_method,
            attributed_fn,
            context_sensitivity_metric,
            context_sensitivity_std_threshold,
            context_sensitivity_topk,
            attribution_std_threshold,
            attribution_topk,
            input_template,
            contextless_input_current_text,
            output_template,
            special_tokens_to_keep,
            decoder_input_output_separator,
            model_kwargs,
            tokenizer_kwargs,
            generation_kwargs,
            attribution_kwargs,
        ],
        outputs=[
            pecore_output_highlights,
            download_output_file_button,
            download_output_html_button,
        ],
    )

    load_model_button.click(
        preload_model,
        inputs=load_model_args,
        outputs=[],
    )

    # Preset params

    outputs_to_reset = [
        model_name_or_path,
        input_template,
        contextless_input_current_text,
        output_template,
        special_tokens_to_keep,
        decoder_input_output_separator,
        model_kwargs,
        tokenizer_kwargs,
        generation_kwargs,
        attribution_kwargs,
    ]
    reset_kwargs = {
        "fn": set_default_preset,
        "inputs": None,
        "outputs": outputs_to_reset,
    }

    # Presets

    default_preset.click(**reset_kwargs).success(preload_model, inputs=load_model_args)

    cora_preset.click(**reset_kwargs).then(
        set_cora_preset,
        outputs=[model_name_or_path, input_template, contextless_input_current_text],
    ).success(preload_model, inputs=load_model_args)

    zephyr_preset.click(**reset_kwargs).then(
        set_zephyr_preset,
        outputs=[
            model_name_or_path,
            input_template,
            contextless_input_current_text,
            decoder_input_output_separator,
        ],
    ).success(preload_model, inputs=load_model_args)

    multilingual_mt_template.click(**reset_kwargs).then(
        set_mmt_preset,
        outputs=[model_name_or_path, input_template, output_template, tokenizer_kwargs],
    ).success(preload_model, inputs=load_model_args)

    chatml_template.click(**reset_kwargs).then(
        set_chatml_preset,
        outputs=[
            model_name_or_path,
            input_template,
            contextless_input_current_text,
            decoder_input_output_separator,
            special_tokens_to_keep,
        ],
    ).success(preload_model, inputs=load_model_args)

    towerinstruct_template.click(**reset_kwargs).then(
        set_towerinstruct_preset,
        outputs=[
            model_name_or_path,
            input_template,
            contextless_input_current_text,
            decoder_input_output_separator,
            special_tokens_to_keep,
        ],
    ).success(preload_model, inputs=load_model_args)

    gemma_template.click(**reset_kwargs).then(
        set_gemma_preset,
        outputs=[
            model_name_or_path,
            input_template,
            contextless_input_current_text,
            decoder_input_output_separator,
            special_tokens_to_keep,
        ],
    ).success(preload_model, inputs=load_model_args)

demo.launch(allowed_paths=["outputs/"])