File size: 9,975 Bytes
8b6d1b6 d82cd6f 2b66ced 08d76ce 2b66ced d82cd6f 2b66ced 08d76ce d82cd6f 08d76ce 2b66ced 08d76ce 2b66ced 08d76ce 2b66ced 449ac0a 2b66ced 449ac0a 2b66ced 08d76ce 06bb18a 08d76ce 06bb18a 08d76ce 06bb18a 08d76ce 2b66ced d82cd6f 08d76ce 8b6d1b6 2574e16 645be2c 2574e16 8b6d1b6 2574e16 645be2c 2574e16 645be2c 2574e16 645be2c 2574e16 645be2c 8b6d1b6 08d76ce 8b6d1b6 2574e16 8b6d1b6 2574e16 8b6d1b6 2574e16 8b6d1b6 2574e16 8b6d1b6 2574e16 08d76ce 8b6d1b6 2574e16 645be2c 8b6d1b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import json
SYSTEM_PROMPT = "You are a helpful assistant that provide concise and accurate answers."
def set_cora_preset():
return (
"gsarti/cora_mgen", # model_name_or_path
"<Q>: {current} <P>: {context}", # input_template
"<Q>: {current}", # input_current_text_template
)
def set_default_preset():
return (
"gpt2", # model_name_or_path
"{current} {context}", # input_template
"{current}", # output_template
"{current}", # contextless_input_template
"{current}", # contextless_output_template
[], # special_tokens_to_keep
"", # decoder_input_output_separator
"{}", # model_kwargs
"{}", # tokenizer_kwargs
"{}", # generation_kwargs
"{}", # attribution_kwargs
)
def set_zephyr_preset():
return (
"stabilityai/stablelm-2-zephyr-1_6b", # model_name_or_path
"<|system|>{system_prompt}<|endoftext|>\n<|user|>\n{context}\n\n{current}<|endoftext|>\n<|assistant|>\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_template
"<|system|>{system_prompt}<|endoftext|>\n<|user|>\n{current}<|endoftext|>\n<|assistant|>\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_current_text_template
["<|im_start|>", "<|im_end|>", "<|endoftext|>"], # special_tokens_to_keep
'{\n\t"max_new_tokens": 50\n}', # generation_kwargs
)
def set_chatml_preset():
return (
"Qwen/Qwen1.5-0.5B-Chat", # model_name_or_path
"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{context}\n\n{current}<|im_end|>\n<|im_start|>assistant\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_template
"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{current}<|im_end|>\n<|im_start|>assistant\n".replace("{system_prompt}", SYSTEM_PROMPT), # input_current_text_template
["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep
'{\n\t"max_new_tokens": 50\n}', # generation_kwargs
)
def set_mbart_mmt_preset():
return (
"facebook/mbart-large-50-one-to-many-mmt", # model_name_or_path
"{context} {current}", # input_template
"{context} {current}", # output_template
'{\n\t"src_lang": "en_XX",\n\t"tgt_lang": "fr_XX"\n}', # tokenizer_kwargs
)
def set_nllb_mmt_preset():
return (
"facebook/nllb-200-distilled-600M", # model_name_or_path
"{context} {current}", # input_template
"{context} {current}", # output_template
'{\n\t"src_lang": "eng_Latn",\n\t"tgt_lang": "fra_Latn"\n}', # tokenizer_kwargs
)
def set_towerinstruct_preset():
return (
"Unbabel/TowerInstruct-7B-v0.1", # model_name_or_path
"<|im_start|>user\nSource: {current}\nContext: {context}\nTranslate the above text into French. Use the context to guide your answer.\nTarget:<|im_end|>\n<|im_start|>assistant\n", # input_template
"<|im_start|>user\nSource: {current}\nTranslate the above text into French.\nTarget:<|im_end|>\n<|im_start|>assistant\n", # input_current_text_template
["<|im_start|>", "<|im_end|>"], # special_tokens_to_keep
'{\n\t"max_new_tokens": 50\n}', # generation_kwargs
)
def set_gemma_preset():
return (
"google/gemma-2b-it", # model_name_or_path
"<start_of_turn>user\n{context}\n{current}<end_of_turn>\n<start_of_turn>model\n", # input_template
"<start_of_turn>user\n{current}<end_of_turn>\n<start_of_turn>model\n", # input_current_text_template
["<start_of_turn>", "<end_of_turn>"], # special_tokens_to_keep
'{\n\t"max_new_tokens": 50\n}', # generation_kwargs
)
def set_mistral_instruct_preset():
return (
"mistralai/Mistral-7B-Instruct-v0.2" # model_name_or_path
"[INST]{context}\n{current}[/INST]" # input_template
"[INST]{current}[/INST]" # input_current_text_template
'{\n\t"max_new_tokens": 50\n}', # generation_kwargs
)
def update_code_snippets_fn(
input_current_text: str,
input_context_text: str,
output_current_text: str,
output_context_text: str,
model_name_or_path: str,
attribution_method: str,
attributed_fn: str | None,
context_sensitivity_metric: str,
context_sensitivity_std_threshold: float,
context_sensitivity_topk: int,
attribution_std_threshold: float,
attribution_topk: int,
input_template: str,
output_template: str,
contextless_input_template: str,
contextless_output_template: str,
special_tokens_to_keep: str | list[str] | None,
decoder_input_output_separator: str,
model_kwargs: str,
tokenizer_kwargs: str,
generation_kwargs: str,
attribution_kwargs: str,
) -> tuple[str, str]:
if not input_current_text:
input_current_text = "<MISSING INPUT CURRENT TEXT, REQUIRED>"
nl = "\n"
tq = "\"\"\""
def escape_quotes(s: str) -> str:
return s.replace('"', '\\"')
def py_get_kwargs_str(kwargs: str, name: str, pad: str = " " * 4) -> str:
kwargs_dict = json.loads(kwargs)
return nl + pad + name + '=' + str(kwargs_dict) + ',' if kwargs_dict else ''
def py_get_if_specified(arg: str | int | float | list | None, name: str, pad: str = " " * 4) -> str:
if arg is None or (isinstance(arg, (str, list)) and not arg) or (isinstance(arg, (int, float)) and arg <= 0):
return ""
elif isinstance(arg, str):
return nl + pad + name + "=" + tq + arg + tq + ","
elif isinstance(arg, list):
return nl + pad + name + "=" + str(arg) + ","
else:
return nl + pad + name + "=" + str(arg) + ","
def sh_get_kwargs_str(kwargs: str, name: str, pad: str = " " * 4) -> str:
return nl + pad + f"--{name} " + '"' + escape_quotes("".join(x.strip() for x in str(kwargs).split("\n"))) + '"' + " \\" if json.loads(kwargs) else ''
def sh_get_if_specified(arg: str | int | float | list | None, name: str, pad: str = " " * 4) -> str:
if arg is None or (isinstance(arg, (str, list)) and not arg) or (isinstance(arg, (int, float)) and arg <= 0):
return ""
elif isinstance(arg, str):
return nl + pad + f"--{name} " + '"' + escape_quotes(arg) + '"' + " \\"
elif isinstance(arg, list):
return nl + pad + f"--{name} " + " ".join(str(arg)) + " \\"
else:
return nl + pad + f"--{name} " + str(arg) + " \\"
# Python
python = f"""#!pip install inseq
import inseq
from inseq.commands.attribute_contex.attribute_context import attribute_context_with_model, AttributeContextArgs
inseq_model = inseq.load_model(
"{model_name_or_path}",
"{attribution_method}",{py_get_kwargs_str(model_kwargs, "model_kwargs")}{py_get_kwargs_str(tokenizer_kwargs, "tokenizer_kwargs")}
)
pecore_args = AttributeContextArgs(
model_name_or_path="{model_name_or_path}",
attribution_method="{attribution_method}",
attributed_fn="{attributed_fn}",
context_sensitivity_metric="{context_sensitivity_metric}",
context_sensitivity_std_threshold={context_sensitivity_std_threshold},{py_get_if_specified(context_sensitivity_topk, "context_sensitivity_topk")}
attribution_std_threshold={attribution_std_threshold},{py_get_if_specified(attribution_topk, "attribution_topk")}
input_current_text=\"\"\"{input_current_text}\"\"\",{py_get_if_specified(input_context_text, "input_context_text")}
contextless_input_current_text=\"\"\"{contextless_input_template}\"\"\",
input_template=\"\"\"{input_template}\"\"\",{py_get_if_specified(output_current_text, "output_current_text")}{py_get_if_specified(output_context_text, "output_context_text")}
contextless_output_current_text=\"\"\"{contextless_output_template}\"\"\",
output_template="{output_template}",{py_get_if_specified(special_tokens_to_keep, "special_tokens_to_keep")}{py_get_if_specified(decoder_input_output_separator, "decoder_input_output_separator")}
save_path="pecore_output.json",
viz_path="pecore_output.html",{py_get_kwargs_str(model_kwargs, "model_kwargs")}{py_get_kwargs_str(tokenizer_kwargs, "tokenizer_kwargs")}{py_get_kwargs_str(generation_kwargs, "generation_kwargs")}{py_get_kwargs_str(attribution_kwargs, "attribution_kwargs")}
)
out = attribute_context_with_model(pecore_args, inseq_model)"""
# Bash
bash = f"""# pip install inseq
inseq attribute-context \\
--model_name_or_path "{model_name_or_path}" \\
--attribution_method "{attribution_method}" \\
--attributed_fn "{attributed_fn}" \\
--context_sensitivity_metric "{context_sensitivity_metric}" \\
--context_sensitivity_std_threshold {context_sensitivity_std_threshold} \\{sh_get_if_specified(context_sensitivity_topk, "context_sensitivity_topk")}
--attribution_std_threshold {attribution_std_threshold} \\{sh_get_if_specified(attribution_topk, "attribution_topk")}
--input_current_text "{escape_quotes(input_current_text)}" \\{sh_get_if_specified(input_context_text, "input_context_text")}
--contextless_input_current_text "{escape_quotes(contextless_input_template)}" \\
--input_template "{escape_quotes(input_template)}" \\{sh_get_if_specified(output_current_text, "output_current_text")}{sh_get_if_specified(output_context_text, "output_context_text")}
--contextless_output_current_text "{escape_quotes(contextless_output_template)}" \\
--output_template "{escape_quotes(output_template)}" \\{sh_get_if_specified(special_tokens_to_keep, "special_tokens_to_keep")}{sh_get_if_specified(decoder_input_output_separator, "decoder_input_output_separator")}
--save_path "pecore_output.json" \\
--viz_path "pecore_output.html" \\{sh_get_kwargs_str(model_kwargs, "model_kwargs")}{sh_get_kwargs_str(tokenizer_kwargs, "tokenizer_kwargs")}{sh_get_kwargs_str(generation_kwargs, "generation_kwargs")}{sh_get_kwargs_str(attribution_kwargs, "attribution_kwargs")}""".strip("\\")
return python, bash
|