title = "

🐑 Plausibility Evaluation of Context Reliance (PECoRe) 🐑

" subtitle = "

An Interpretability Framework to Detect and Attribute Context Reliance in Language Models

" description = """ PECoRe is a framework for trustworthy language generation using only model internals to detect and attribute model generations to its available input context. Given a query-context input pair, PECoRe identifies which tokens in the generated response were more dependant on context (Context sensitive ), and match them with context tokens contributing the most to their prediction (Influential context ). Check out our ICLR 2024 paper for more details. A new paper applying PECoRe to retrieval-augmented QA is forthcoming ✨ stay tuned! """ how_it_works_intro = """ The PECoRe (Plausibility Evaluation of Context Reliance) framework is designed to detect and quantify context usage throughout language model generations. Its final goal is to return one or more pairs representing tokens in the generated response that were influenced by the presence of context (Context sensitive ), and their corresponding influential context tokens (Influential context ). The PECoRe procedure involves two contrastive comparison steps: """ cti_explanation = """

1. Context-sensitive Token Identification (CTI)

In this step, the goal is to identify which tokens in the generated text were influenced by the preceding context.

First, a context-aware generation is produced using the model's inputs augmented with available context. Then, the same generation is force-decoded using the contextless inputs. During both processes, a contrastive metric (KL-divergence is used as default for the Context sensitivity metric parameter) are collected for every generated token. Intuitively, higher metric scores indicate that the current generation step was more influenced by the presence of context.

The generated tokens are ranked according to their metric scores, and the most salient tokens are selected for the next step (This demo provides a Context sensitivity threshold parameter to select tokens above N standard deviations from the in-example metric average, and Context sensitivity top-k to pick the K most salient tokens.)

In the example shown in the figure, elle is selected as the only context-sensitive token by the procedure.

""" cci_explanation = """

2. Contextual Cue Imputation (CCI)

Once context-sensitive tokens are identified, the next step is to link every one of these tokens to specific contextual cues that justified its prediction.

This is achieved by means of contrastive feature attribution (Yin and Neubig, 2022). More specifically, for a given context-sensitive token, a contrastive alternative to it is generated in absence of input context, and a function of the probabilities of the pair is used to identify salient parts of the context (By default, in this demo we use saliency, i.e. raw gradients, for the Attribution method and contrast_prob_diff, i.e. the probability difference between the two options, for the Attributed function).

Gradients are collected and aggregated to obtain a single score per context token, which is then used to rank the tokens and select the most influential ones (This demo provides a Attribution threshold parameter to select tokens above N standard deviations from the in-example metric average, and Attribution top-k to pick the K most salient tokens.)

In the example shown in the figure, the attribution process links elle to dishes and assiettes in the source and target contexts, respectively. This makes sense intuitively, as they in the original input is gender-neutral in English, and the presence of its gendered coreferent disambiguates the choice for the French pronoun in the translation.

""" how_to_use = """

How to use this demo

This demo provides a convenient UI for the Inseq implementation of PECoRe (the inseq attribute-context CLI command).

In the demo tab, fill in the input and context fields with the text you want to analyze, and click the Run PECoRe button to produce an output where the tokens selected by PECoRe in the model generation and context are highlighted. For more details on the parameters and their meaning, check the Parameters tab.

Interpreting PECoRe results

""" example_explanation = """

The example shows the output of the CORA Multilingual QA model used as default in the interface, using default settings.

""" citation = r"""

To refer to the PECoRe framework for context usage detection, cite:


@inproceedings{sarti-etal-2023-quantifying,
    title = "Quantifying the Plausibility of Context Reliance in Neural Machine Translation",
    author = "Sarti, Gabriele and
        Chrupa{\l}a, Grzegorz and
        Nissim, Malvina and
        Bisazza, Arianna",
    booktitle = "The Twelfth International Conference on Learning Representations (ICLR 2024)",
    month = may,
    year = "2024",
    address = "Vienna, Austria",
    publisher = "OpenReview",
    url = "https://openreview.net/forum?id=XTHfNGI3zT"
}
If you use the Inseq implementation of PECoRe (inseq attribute-context, including this demo), please also cite:

@inproceedings{sarti-etal-2023-inseq,
    title = "Inseq: An Interpretability Toolkit for Sequence Generation Models",
    author = "Sarti, Gabriele  and
        Feldhus, Nils  and
        Sickert, Ludwig  and
        van der Wal, Oskar and
        Nissim, Malvina and
        Bisazza, Arianna",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-demo.40",
    pages = "421--435",
}
""" powered_by = """""" support = """""" examples = [ [ "How many inhabitants does Groningen have?", "Groningen is the capital city and main municipality of Groningen province in the Netherlands. The capital of the north, Groningen is the largest place as well as the economic and cultural centre of the northern part of the country as of December 2021, it had 235,287 inhabitants, making it the sixth largest city/municipality in the Netherlands and the second largest outside the Randstad. Groningen was established more than 950 years ago and gained city rights in 1245." ], [ "When was Banff National Park established?", "Banff National Park is Canada's oldest national park, established in 1885 as Rocky Mountains Park. Located in Alberta's Rocky Mountains, 110-180 kilometres (68-112 mi) west of Calgary, Banff encompasses 6,641 square kilometres (2,564 sq mi) of mountainous terrain.", ], [ "约翰·埃尔维目前在野马队中担任什么角色?", "培顿·曼宁成为史上首位带领两支不同球队多次进入超级碗的四分卫。他也以 39 岁高龄参加超级碗而成为史上年龄最大的四分卫。过去的记录是由约翰·埃尔维保持的,他在 38岁时带领野马队赢得第 33 届超级碗,目前担任丹佛的橄榄球运营执行副总裁兼总经理。", ], [ "Qual'è il porto più settentrionale della Slovenia?", "Trieste si trova a nordest dell'Italia. La città dista solo alcuni chilometri dal confine con la Slovenia e si trova fra la penisola italiana e la penisola istriana. Il porto triestino è il più settentrionale tra quelli situati nel mare Adriatico. Questa particolare posizione ha da sempre permesso alle navi di approdare direttamente nell'Europa centrale. L'incredibile sviluppo che la città conobbe nell'800 grazie al suo porto franco, indusse a trasferirsi qui una moltitudine di lavoratori provenienti dall'Italia nonché tanti uomini d'affari da tutta Europa. Questa crescita così vorticosa, indotta dalla costituzione del porto franco, portò in poco più di un secolo la popolazione a crescere da poche migliaia fino a più di 200 000 persone, disseminando la città di chiese di tutte le maggiori religioni europee. La nuova città multietnica così formata ha nel tempo sviluppato un proprio linguaggio, infatti il Triestino moderno è un dialetto della lingua veneta. Nella provincia di Trieste vive la minoranza autoctona slovena, infatti nei paesi che circondano il capoluogo giuliano, i cartelli stradali e le insegne di molti negozi sono bilingui. La Provincia è la meno estesa d'Italia ed è quarta per densità abitativa, dopo Napoli, Milano e Monza." ] ]