File size: 14,856 Bytes
7d34870
8caacce
 
 
7d34870
 
 
 
 
8caacce
 
 
 
7d34870
 
8caacce
 
7d34870
 
 
3a1052f
9ee78af
7d34870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8caacce
 
74dd4ee
 
7d34870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4998508
7d34870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8caacce
7d34870
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import re
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from unidecode import unidecode
from gradio_i18n import gettext, Translate
from datasets import load_dataset

from style import custom_css, solution_style, letter_style, definition_style

template = """<s><|user|>
Risolvi gli indizi tra parentesi per ottenere una prima lettura, e usa la chiave di lettura per ottenere la soluzione del rebus.

Rebus: {rebus}
Chiave di lettura: {key}<|end|>
<|assistant|>"""

eureka5_test_data = load_dataset(
    'gsarti/eureka-rebus', 'llm_sft',
    data_files=["id_test.jsonl", "ood_test.jsonl"],
    split = "train",
    revision="1.0"
)

OUTPUTS_BASE_URL = "https://raw.githubusercontent.com/gsarti/verbalized-rebus/main/outputs/"

model_outputs = load_dataset(
    "csv",
    data_files={
        "gpt4": OUTPUTS_BASE_URL + "prompted_models/gpt4o_results.csv",
        "claude3_5_sonnet": OUTPUTS_BASE_URL + "prompted_models/claude3_5_sonnet_results.csv",
        "llama3_70b": OUTPUTS_BASE_URL + "prompted_models/llama3_70b_results.csv",
        "qwen_72b": OUTPUTS_BASE_URL + "prompted_models/qwen_72b_results.csv",
        "phi3_mini": OUTPUTS_BASE_URL + "phi3_mini/phi3_mini_results_step_5070.csv",
        "gemma2": OUTPUTS_BASE_URL + "gemma2_2b/gemma2_2b_results_step_5070.csv",
        "llama3_1_8b": OUTPUTS_BASE_URL + "llama3.1_8b/llama3.1_8b_results_step_5070.csv"
    }
)

def extract(span_text: str, tag: str = "span") -> str:
    pattern = rf'<{tag}[^>]*>(.*?)<\/{tag}>'
    matches = re.findall(pattern, span_text)
    return "".join(matches) if matches else ""

    
def parse_rebus(ex_idx: int):
    i = eureka5_test_data[ex_idx - 1]["conversations"][0]["value"]
    o = eureka5_test_data[ex_idx - 1]["conversations"][1]["value"]
    rebus = i.split("Rebus: ")[1].split("\n")[0]
    rebus_letters = re.sub(r"\[.*?\]", "<<<>>>", rebus)
    rebus_letters = re.sub(r"([a-zA-Z]+)", rf"""{letter_style}\1</span>""", rebus_letters)
    fp_empty = rebus_letters.replace("<<<>>>", f"{definition_style}___</span>")
    key = i.split("Chiave di lettura: ")[1].split("\n")[0]
    key_split = key
    key_highlighted = re.sub(r"(\d+)", rf"""{solution_style}\1</span>""", key)
    fp_elements = re.findall(r"- (.*) = (.*)", o)
    definitions = [x[0] for x in fp_elements if x[0].startswith("[")]
    for i, el in enumerate(fp_elements):
        if el[0].startswith("["):
            fp_elements[i] = (re.sub(r"\[(.*?)\]", rf"""{definition_style}[\1]</span>""", fp_elements[i][0]), fp_elements[i][1])
        else:
            fp_elements[i] = (
                f"{letter_style}{fp_elements[i][0]}</span>",
                f"{letter_style}{fp_elements[i][1]}</span>",
            )
    fp = re.findall(r"Prima lettura: (.*)", o)[0]
    s_elements = re.findall(r"(\d+) = (.*)", o)
    s = re.findall(r"Soluzione: (.*)", o)[0]
    for d in definitions:
        rebus_letters = rebus_letters.replace("<<<>>>", d, 1)
    rebus_highlighted = re.sub(r"\[(.*?)\]", rf"""{definition_style}[\1]</span>""", rebus_letters)
    return {
        "rebus": rebus_highlighted,
        "key": key_highlighted,
        "key_split": key_split,
        "fp_elements": fp_elements,
        "fp": fp,
        "fp_empty": fp_empty,
        "s_elements": s_elements,
        "s": s
    }


#tokenizer = AutoTokenizer.from_pretrained("gsarti/phi3-mini-rebus-solver-fp16")
#model = AutoModelForCausalLM.from_pretrained("gsarti/phi3-mini-rebus-solver-fp16")

@spaces.GPU
def solve_verbalized_rebus(example, history):
    input = template.format(input=example)
    #inputs = tokenizer(input, return_tensors="pt")["input_ids"]
    #outputs = model.generate(input_ids = inputs, max_new_tokens = 500, use_cache = True)
    #model_generations = tokenizer.batch_decode(outputs)
    #return model_generations[0]
    return input

#demo = gr.ChatInterface(fn=solve_verbalized_rebus, examples=["Rebus: [Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]\nChiave risolutiva: 1 ' 5 6 5 3 3 1 14"], title="Verbalized Rebus Solver")
#demo.launch()

with gr.Blocks(css=custom_css) as demo:
    lang = gr.Dropdown([("English", "en"), ("Italian", "it")], value="it", label="Select language:", interactive=True)
    with Translate("translations.yaml", lang, placeholder_langs=["en", "it"]):
        gr.Markdown(gettext("Title"))
        gr.Markdown(gettext("Intro"))
        with gr.Tab(gettext("GuessingGame")):
            with gr.Row():
                with gr.Column():
                    example_id = gr.Number(1, label=gettext("CurrentExample"), minimum=1, maximum=2000, step=1, interactive=True)
                with gr.Column():
                    show_length_hints = gr.Checkbox(False, label=gettext("ShowLengthHints"), interactive=True)

            @gr.render(inputs=[example_id, show_length_hints], triggers=[demo.load, example_id.change, show_length_hints.change, lang.change])
            def show_example(example_number, show_length_hints):
                parsed_rebus = parse_rebus(example_number)
                gr.Markdown(gettext("Instructions"))
                gr.Markdown(gettext("Rebus") + f"{parsed_rebus['rebus']}</h4>"),
                gr.Markdown(gettext("Key") + f"{parsed_rebus['key']}</h4>")
                gr.Markdown("<br><br>")
                with gr.Row():
                    answers: list[gr.Textbox] = []
                    with gr.Column(scale=2):
                        gr.Markdown(gettext("ProceedToResolution"))
                        for el_key, el_value in parsed_rebus['fp_elements']:
                            with gr.Row():
                                with gr.Column(scale=0.2, min_width=250):
                                    gr.Markdown(f"<p>{el_key} = </p>")
                                    if el_key.startswith('<span class="definition"') and show_length_hints:
                                        gr.Markdown(f"<p>({len(el_value)} lettere)</p>")
                                with gr.Column(scale=0.2, min_width=150):
                                    if el_key.startswith('<span class="definition"'):
                                        definition_answer = gr.Textbox(show_label=False, placeholder="Guess...", interactive=True, max_lines=3)
                                        answers.append(definition_answer)
                                    else:
                                        gr.Markdown(el_value)
                            gr.Markdown("<hr>")
                    with gr.Column(scale=3):
                        key_value = gr.Markdown(parsed_rebus['key_split'], visible=False)
                        fp_empty = gr.Markdown(parsed_rebus['fp_empty'], visible=False)
                        fp = gr.Markdown(gettext("FirstPass") + f"{parsed_rebus['fp_empty']}</h4><br>")
                        solution_words: list[gr.Markdown] = []
                        clean_solution_words: list[str] = []
                        clean_fp = extract(fp.value)
                        curr_idx = 0
                        for n_char in parsed_rebus['key_split'].split():
                            word = clean_fp[curr_idx:curr_idx + int(n_char)].upper()
                            clean_solution_words.append(word)
                            solution_word = gr.Markdown(gettext("SolutionWord") + f"{n_char}: {solution_style}{word}</span></h4>")
                            curr_idx += int(n_char)
                            solution_words.append(solution_word)
                        gr.Markdown("<br>")
                        solution = gr.Markdown(gettext("Solution") + f"{solution_style}{' '.join(clean_solution_words)}</span></h4>")
                        correct_solution = gr.Markdown(gettext("CorrectSolution") + f"{solution_style}{parsed_rebus['s'].upper()}</span></h4>", visible=False)
                        correct_solution_shown = gr.Checkbox(False, visible=False)
                        gr.Markdown("<hr>")
                        prompted_models = gr.Markdown(gettext("PromptedModels"), visible=False)
                        gpt4_solution = gr.Markdown(gettext("GPT4Solution") + f"{solution_style}{model_outputs['gpt4'][example_number - 1]['solution']}</span></h4>", visible=False)
                        claude_solution = gr.Markdown(gettext("ClaudeSolution") + f"{solution_style}{model_outputs['claude3_5_sonnet'][example_number - 1]['solution']}</span></h4>", visible=False)
                        llama3_70b_solution = gr.Markdown(gettext("LLaMA370BSolution") + f"{solution_style}{model_outputs['llama3_70b'][example_number - 1]['solution']}</span></h4>", visible=False)
                        qwen_72b_solution = gr.Markdown(gettext("Qwen72BSolution") + f"{solution_style}{model_outputs['qwen_72b'][example_number - 1]['solution']}</span></h4>", visible=False)
                        models_separator = gr.Markdown("<hr>", visible=False)
                        trained_models = gr.Markdown(gettext("TrainedModels"), visible=False)
                        llama3_1_8b_solution = gr.Markdown(gettext("LLaMA318BSolution") + f"{solution_style}{model_outputs['llama3_1_8b'][example_number - 1]['solution']}</span></h4>", visible=False)
                        phi3_mini_solution = gr.Markdown(gettext("Phi3MiniSolution") + f"{solution_style}{model_outputs['phi3_mini'][example_number - 1]['solution']}</span></h4>", visible=False)
                        gemma2_solution = gr.Markdown(gettext("Gemma22BSolution") + f"{solution_style}{model_outputs['gemma2'][example_number - 1]['solution']}</span></h4>", visible=False)
                        models_solutions_shown = gr.Checkbox(False, visible=False)
                        with gr.Row():
                            btn_check = gr.Button(gettext("CheckSolution"), variant="primary")
                            btn_show = gr.Button(gettext("ShowSolution"))
                            btn_show_models_solutions = gr.Button(gettext("ShowModelsSolutions"))

                    def update_fp(fp_empty=fp_empty, key_value=key_value, *answers):
                        len_solutions = key_value.split()
                        for answer in answers:
                            if answer is not None and answer != "":
                                fp_empty = fp_empty.replace("___", answer, 1)
                        curr_idx = 0
                        new_solutions = []
                        new_solutions_clean = []
                        clean_fp_empty = extract(fp_empty)
                        for n_char in len_solutions:
                            word = clean_fp_empty[curr_idx:curr_idx + int(n_char)].upper()
                            new_solutions_clean.append(word)
                            new_solutions.append(gr.Markdown(gettext("SolutionWord") + f"{n_char}: {solution_style}{word}</span></h4>"))
                            curr_idx += int(n_char)
                        return [
                            gr.Markdown(gettext("FirstPass") + f"{fp_empty}</h4><br>"),
                            gr.Markdown(gettext("Solution") + f"{solution_style}{' '.join(new_solutions_clean)}</span></h4>")
                        ] + new_solutions
                    
                    def check_solution(solution, correct_solution):
                        solution = unidecode(extract(solution))
                        correct_solution = unidecode(extract(correct_solution))
                        if solution == correct_solution:
                            gr.Info(gettext("CorrectSolutionMsg"))
                        else:
                            gr.Info(gettext("IncorrectSolutionMsg"))
                    
                    def show_solution(correct_solution, btn_show, shown):
                        if shown:
                            return gr.Markdown(correct_solution, visible=False), gr.Button(gettext("ShowSolution")), gr.Checkbox(False, visible=False)
                        else:
                            return gr.Markdown(correct_solution, visible=True), gr.Button(gettext("HideSolution")), gr.Checkbox(True, visible=False)
                    
                    def show_models_solutions(models_solutions_shown, btn_show_models_solutions, gpt4_solution, claude_solution, llama3_70b_solution, qwen_72b_solution, llama3_1_8b_solution, phi3_mini_solution, gemma2_solution, prompted_models, trained_models, models_separator):
                        if models_solutions_shown:
                            return gr.Markdown(gpt4_solution, visible=False), gr.Markdown(claude_solution, visible=False), gr.Markdown(llama3_70b_solution, visible=False), gr.Markdown(qwen_72b_solution, visible=False), gr.Markdown(llama3_1_8b_solution, visible=False), gr.Markdown(phi3_mini_solution, visible=False), gr.Markdown(gemma2_solution, visible=False), gr.Markdown(prompted_models, visible=False), gr.Markdown(trained_models, visible=False), gr.Markdown(models_separator, visible=False), gr.Button(gettext("ShowModelsSolutions")), gr.Checkbox(False, visible=False)
                        else:
                            return gr.Markdown(gpt4_solution, visible=True), gr.Markdown(claude_solution, visible=True), gr.Markdown(llama3_70b_solution, visible=True), gr.Markdown(qwen_72b_solution, visible=True), gr.Markdown(llama3_1_8b_solution, visible=True), gr.Markdown(phi3_mini_solution, visible=True), gr.Markdown(gemma2_solution, visible=True), gr.Markdown(prompted_models, visible=True), gr.Markdown(trained_models, visible=True), gr.Markdown(models_separator, visible=True), gr.Button(gettext("HideModelsSolutions")), gr.Checkbox(True, visible=False)

                    for answer in answers:
                        answer.change(update_fp, [fp_empty, key_value, *answers], [fp, solution, *solution_words])

                    btn_check.click(check_solution, [solution, correct_solution], None)
                    btn_show.click(show_solution, [correct_solution, btn_show, correct_solution_shown], [correct_solution, btn_show, correct_solution_shown])
                    btn_show_models_solutions.click(show_models_solutions, [models_solutions_shown, btn_show_models_solutions, gpt4_solution, claude_solution, llama3_70b_solution, qwen_72b_solution, llama3_1_8b_solution, phi3_mini_solution, gemma2_solution, prompted_models, trained_models, models_separator], [gpt4_solution, claude_solution, llama3_70b_solution, qwen_72b_solution, llama3_1_8b_solution, phi3_mini_solution, gemma2_solution, prompted_models, trained_models, models_separator, btn_show_models_solutions, models_solutions_shown])
                    
        with gr.Tab(gettext("ModelEvaluation")):
            gr.Markdown("<i>This section is under construction! Check again later 🙏</i>")


demo.launch(show_api=False)