File size: 6,837 Bytes
d34a4b1
 
 
fca8815
d34a4b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
from PIL import Image
import os
from src.flux.xflux_pipeline import XFluxPipeline
import random
import spaces

def run_xflux_pipeline(
    prompt, image, repo_id, name, device,
    model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
    neg_prompt="",
    negative_image=None,
    save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False 
):
    # Montando os argumentos simulando a linha de comando
    class Args:
        def __init__(self):
            self.prompt = prompt
            self.image = image
            self.control_type = control_type
            self.repo_id = repo_id
            self.name = name
            self.device = device
            self.use_controlnet = use_controlnet
            self.model_type = model_type
            self.width = width
            self.height = height
            self.timestep_to_start_cfg = timestep_to_start_cfg
            self.num_steps = num_steps
            self.true_gs = true_gs
            self.guidance = guidance
            self.num_images_per_prompt = num_images_per_prompt
            self.seed = seed if seed else 123456789
            self.neg_prompt = neg_prompt
            self.img_prompt = Image.open(image)
            self.neg_img_prompt = Image.open(negative_image) if negative_image else None
            self.ip_scale = 1.0
            self.neg_ip_scale = 1.0
            self.local_path = None
            self.ip_repo_id = "XLabs-AI/flux-ip-adapter"
            self.ip_name = "flux-ip-adapter.safetensors"
            self.ip_local_path = None
            self.lora_repo_id = lora_repo_id
            self.lora_name = lora_name
            self.lora_local_path = None
            self.offload = False
            self.use_ip = use_ip
            self.use_lora = use_lora
            self.lora_weight = lora_weight
            self.save_path = save_path

    args = Args()

    # Carregar a imagem se fornecida
    if args.image:
        image = Image.open(args.image)
    else:
        image = None
    
    # Inicializar o pipeline com os parâmetros necessários
    xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
    
    # Configurar ControlNet se necessário
    if args.use_controlnet:
        print('Loading ControlNet:', args.local_path, args.repo_id, args.name)
        xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
    if args.use_ip:
        print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
        xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
    if args.use_lora:
        print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
        xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
    
    # Laço para gerar imagens
    images = []
    for _ in range(args.num_images_per_prompt):
        seed = random.randint(0, 2147483647)
        result = xflux_pipeline(
            prompt=args.prompt,
            controlnet_image=image,
            width=args.width,
            height=args.height,
            guidance=args.guidance,
            num_steps=args.num_steps,
            seed=seed,
            true_gs=args.true_gs,
            neg_prompt=args.neg_prompt,
            timestep_to_start_cfg=args.timestep_to_start_cfg,
            image_prompt=args.img_prompt, 
            neg_image_prompt=args.neg_img_prompt, 
            ip_scale=args.ip_scale, 
            neg_ip_scale=args.neg_ip_scale, 
        )
        images.append(result)

    return images

@spaces.GPU(duration=500)
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
    return run_xflux_pipeline(
          prompt=prompt,
          neg_prompt=neg_prompt,
          image=image,
          negative_image=negative_image,
          lora_name=lora_name,
          lora_weight=lora_weight,
          lora_repo_id=lora_path,
          control_type="depth" if use_depth else "hed" if use_hed else "canny",
          repo_id="XLabs-AI/flux-controlnet-collections",
          name="flux-depth-controlnet.safetensors",
          device="cuda",
          use_controlnet=use_controlnet,
          model_type="flux-dev",
          width=1024,
          height=1024,
          timestep_to_start_cfg=cfg,
          num_steps=steps,
          num_images_per_prompt=4,
          use_lora=use_lora,
          true_gs=true_gs,
          use_ip=use_ip,
          guidance=guidance
      )


custom_css = """
body {
  background: rgb(24, 24, 27);
}

.gradio-container {
  background: rgb(24, 24, 27);
}

.app-container {
  background: rgb(24, 24, 27);
}

gradio-app {
  background: rgb(24, 24, 27);
}


.sidebar {
  background: rgb(31, 31, 35);
  border-right: 1px solid rgb(41, 41, 41);
}
"""

with gr.Blocks(css=custom_css) as demo:
    with gr.Row(elem_classes="app-container"):
        with gr.Column():
            input_image = gr.Image(label="Image", type="filepath")
            negative_image = gr.Image(label="Negative_image", type="filepath")
            submit_btn = gr.Button("Submit")

        with gr.Column():
            prompt = gr.Textbox(label="Prompt")
            neg_prompt = gr.Textbox(label="Neg Prompt")
            steps = gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps")
            use_lora = gr.Checkbox(label="Use LORA", value=True)
            lora_path = gr.Textbox(label="LoraPath", value="XLabs-AI/flux-lora-collection")
            lora_name = gr.Textbox(label="LoraName", value="realism_lora.safetensors")
            lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
            controlnet = gr.Checkbox(label="Use Controlnet(by default uses canny)", value=True)
            use_ip = gr.Checkbox(label="Use IP")
            use_depth = gr.Checkbox(label="Use depth")
            use_hed = gr.Checkbox(label="Use hed")
            true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs")
            guidance = gr.Slider(minimum=1, maximum=10, value=4, label="Guidance")
            cfg = gr.Slider(minimum=1, maximum=10, value=1, label="CFG")

        with gr.Column():
            output = gr.Gallery(label="Galery output", elem_classes="galery", selected_index=0)

    submit_btn.click(process_image, inputs=[input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)

demo.launch(share=True)