Spaces:
Running
Running
# flake8: noqa | |
# This file is used for deploying replicate models | |
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0 | |
# push: cog push r8.im/xinntao/realesrgan | |
import os | |
os.system('pip install gfpgan') | |
os.system('python setup.py develop') | |
import cv2 | |
import shutil | |
import tempfile | |
import torch | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from realesrgan.utils import RealESRGANer | |
try: | |
from cog import BasePredictor, Input, Path | |
from gfpgan import GFPGANer | |
except Exception: | |
print('please install cog and realesrgan package') | |
class Predictor(BasePredictor): | |
def setup(self): | |
os.makedirs('output', exist_ok=True) | |
# download weights | |
if not os.path.exists('weights/realesr-general-x4v3.pth'): | |
os.system( | |
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights' | |
) | |
if not os.path.exists('weights/GFPGANv1.4.pth'): | |
os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights') | |
if not os.path.exists('weights/RealESRGAN_x4plus.pth'): | |
os.system( | |
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights' | |
) | |
if not os.path.exists('weights/RealESRGAN_x4plus_anime_6B.pth'): | |
os.system( | |
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights' | |
) | |
if not os.path.exists('weights/realesr-animevideov3.pth'): | |
os.system( | |
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights' | |
) | |
def choose_model(self, scale, version, tile=0): | |
half = True if torch.cuda.is_available() else False | |
if version == 'General - RealESRGANplus': | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
model_path = 'weights/RealESRGAN_x4plus.pth' | |
self.upsampler = RealESRGANer( | |
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half) | |
elif version == 'General - v3': | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'weights/realesr-general-x4v3.pth' | |
self.upsampler = RealESRGANer( | |
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half) | |
elif version == 'Anime - anime6B': | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) | |
model_path = 'weights/RealESRGAN_x4plus_anime_6B.pth' | |
self.upsampler = RealESRGANer( | |
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half) | |
elif version == 'AnimeVideo - v3': | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') | |
model_path = 'weights/realesr-animevideov3.pth' | |
self.upsampler = RealESRGANer( | |
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half) | |
self.face_enhancer = GFPGANer( | |
model_path='weights/GFPGANv1.4.pth', | |
upscale=scale, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler) | |
def predict( | |
self, | |
img: Path = Input(description='Input'), | |
version: str = Input( | |
description='RealESRGAN version. Please see [Readme] below for more descriptions', | |
choices=['General - RealESRGANplus', 'General - v3', 'Anime - anime6B', 'AnimeVideo - v3'], | |
default='General - v3'), | |
scale: float = Input(description='Rescaling factor', default=2), | |
face_enhance: bool = Input( | |
description='Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes', default=False), | |
tile: int = Input( | |
description= | |
'Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200', | |
default=0) | |
) -> Path: | |
if tile <= 100 or tile is None: | |
tile = 0 | |
print(f'img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}.') | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
self.choose_model(scale, version, tile) | |
try: | |
if face_enhance: | |
_, _, output = self.face_enhancer.enhance( | |
img, has_aligned=False, only_center_face=False, paste_back=True) | |
else: | |
output, _ = self.upsampler.enhance(img, outscale=scale) | |
except RuntimeError as error: | |
print('Error', error) | |
print('If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.') | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
# save_path = f'output/out.{extension}' | |
# cv2.imwrite(save_path, output) | |
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}' | |
cv2.imwrite(str(out_path), output) | |
except Exception as error: | |
print('global exception: ', error) | |
finally: | |
clean_folder('output') | |
return out_path | |
def clean_folder(folder): | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
print(f'Failed to delete {file_path}. Reason: {e}') | |