ast-ap2404_v1-240ik / server.py
jgwill's picture
add:app
dc31933
raw
history blame
1.85 kB
import os
import numpy as np
import tensorflow as tf
from module import encoder, decoder
from glob import glob
import runway
@runway.setup(options={"styleCheckpoint": runway.file(is_directory=True)})
def setup(opts):
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
with tf.name_scope("placeholder"):
input_photo = tf.placeholder(
dtype=tf.float32, shape=[1, None, None, 3], name="photo"
)
input_photo_features = encoder(
image=input_photo, options={"gf_dim": 32}, reuse=False
)
output_photo = decoder(
features=input_photo_features, options={"gf_dim": 32}, reuse=False
)
saver = tf.train.Saver()
path = opts["styleCheckpoint"]
model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][
0
]
checkpoint_dir = os.path.join(path, model_name, "checkpoint_long")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
return dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
@runway.command(
"stylize",
inputs={"contentImage": runway.image},
outputs={"stylizedImage": runway.image},
)
def stylize(model, inp):
img = inp["contentImage"]
img = np.array(img)
img = img / 127.5 - 1.0
img = np.expand_dims(img, axis=0)
img = model["sess"].run(
model["output_photo"], feed_dict={model["input_photo"]: img}
)
img = (img + 1.0) * 127.5
img = img.astype("uint8")
img = img[0]
return dict(stylizedImage=img)
if __name__ == "__main__":
#print("External Service port is:" + os.environ.get("SPORT",7860))
#set env var: RW_PORT=7860
os.environ["RW_PORT"] = "7860"
runway.run()