Spaces:
Sleeping
Sleeping
add:app
Browse files- Dockerfile +23 -0
- compo-singleone-v1-dev-acc.py +368 -0
- requirements.txt +69 -0
- server.py +59 -0
Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM guillaumeai/ast:pikawill02b-285ik
|
2 |
+
|
3 |
+
# RUN apt update
|
4 |
+
# RUN apt upgrade -y
|
5 |
+
|
6 |
+
RUN pip install -U pip
|
7 |
+
# #RUN pip install -U pyyaml
|
8 |
+
# RUN pip install -U runway-python
|
9 |
+
# #runway --force-reinstall
|
10 |
+
# #RUN pip install -U tensorflow
|
11 |
+
|
12 |
+
|
13 |
+
COPY requirements.txt .
|
14 |
+
RUN pip install -r requirements.txt
|
15 |
+
|
16 |
+
COPY server.py .
|
17 |
+
COPY compo-singleone-v1-dev-acc.py .
|
18 |
+
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
#compo-singleone-v1-dev-acc.py
|
22 |
+
|
23 |
+
CMD ["python", "compo-singleone-v1-dev-acc.py"]
|
compo-singleone-v1-dev-acc.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#####################################################
|
2 |
+
# AST Composite Server Double Two
|
3 |
+
# By Guillaume Descoteaux-Isabelle, 20021
|
4 |
+
#
|
5 |
+
# This server compose two Adaptive Style Transfer model (output of the first pass serve as input to the second using the same model)
|
6 |
+
########################################################
|
7 |
+
#v1-dev
|
8 |
+
#Receive the 2 res from arguments in the request...
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import tensorflow as tf
|
14 |
+
import cv2
|
15 |
+
from module import encoder, decoder
|
16 |
+
from glob import glob
|
17 |
+
import runway
|
18 |
+
from runway.data_types import number, text
|
19 |
+
|
20 |
+
|
21 |
+
#from utils import *
|
22 |
+
import scipy
|
23 |
+
from datetime import datetime
|
24 |
+
import time
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# Determining the size of the passes
|
30 |
+
pass1_image_size = 1328
|
31 |
+
if not os.getenv('PASS1IMAGESIZE'):
|
32 |
+
print("PASS1IMAGESIZE env var non existent;using default:" + str(pass1_image_size))
|
33 |
+
else:
|
34 |
+
pass1_image_size = os.getenv('PASS1IMAGESIZE', 1328)
|
35 |
+
print("PASS1IMAGESIZE value:" + str(pass1_image_size))
|
36 |
+
|
37 |
+
|
38 |
+
# Determining the size of the passes
|
39 |
+
autoabc = 1
|
40 |
+
if not os.getenv('AUTOABC'):
|
41 |
+
print("AUTOABC env var non existent;using default:")
|
42 |
+
print(autoabc)
|
43 |
+
abcdefault = 1
|
44 |
+
print("NOTE----> when running docker, set AUTOABC variable")
|
45 |
+
print(" docker run ... -e AUTOABC=1 #enabled, 0 to disabled (default)")
|
46 |
+
else:
|
47 |
+
autoabc = os.getenv('AUTOABC',1)
|
48 |
+
print("AUTOABC value:")
|
49 |
+
print(autoabc)
|
50 |
+
abcdefault = autoabc
|
51 |
+
|
52 |
+
|
53 |
+
#pass2_image_size = 1024
|
54 |
+
#if not os.getenv('PASS2IMAGESIZE'):
|
55 |
+
# print("PASS2IMAGESIZE env var non existent;using default:" + pass2_image_size)
|
56 |
+
#else:
|
57 |
+
# pass2_image_size = os.getenv('PASS2IMAGESIZE')
|
58 |
+
# print("PASS2IMAGESIZE value:" + pass2_image_size)
|
59 |
+
|
60 |
+
# pass3_image_size = 2048
|
61 |
+
# if not os.getenv('PASS3IMAGESIZE'):
|
62 |
+
# print("PASS3IMAGESIZE env var non existent;using default:" + pass3_image_size)
|
63 |
+
# else:
|
64 |
+
# pass3_image_size = os.getenv('PASS3IMAGESIZE')
|
65 |
+
# print("PASS3IMAGESIZE value:" + pass3_image_size)
|
66 |
+
|
67 |
+
##########################################
|
68 |
+
## MODELS
|
69 |
+
#model name for sending it in the response
|
70 |
+
model1name = "UNNAMED"
|
71 |
+
if not os.getenv('MODEL1NAME'):
|
72 |
+
print("MODEL1NAME env var non existent;using default:" + model1name)
|
73 |
+
else:
|
74 |
+
model1name = os.getenv('MODEL1NAME', "UNNAMED")
|
75 |
+
print("MODEL1NAME value:" + model1name)
|
76 |
+
|
77 |
+
# #m2
|
78 |
+
# model2name = "UNNAMED"
|
79 |
+
# if not os.getenv('MODEL2NAME'): print("MODEL2NAME env var non existent;using default:" + model2name)
|
80 |
+
# else:
|
81 |
+
# model2name = os.getenv('MODEL2NAME')
|
82 |
+
# print("MODEL2NAME value:" + model2name)
|
83 |
+
|
84 |
+
# #m3
|
85 |
+
# model3name = "UNNAMED"
|
86 |
+
# if not os.getenv('MODEL3NAME'): print("MODEL3NAME env var non existent;using default:" + model3name)
|
87 |
+
# else:
|
88 |
+
# model3name = os.getenv('MODEL3NAME')
|
89 |
+
# print("MODEL3NAME value:" + model3name)
|
90 |
+
|
91 |
+
#######################################################
|
92 |
+
|
93 |
+
|
94 |
+
#########################################################
|
95 |
+
# SETUP
|
96 |
+
|
97 |
+
@runway.setup(options={'styleCheckpoint': runway.file(is_directory=True)})
|
98 |
+
def setup(opts):
|
99 |
+
sess = tf.Session()
|
100 |
+
# sess2 = tf.Session()
|
101 |
+
# sess3 = tf.Session()
|
102 |
+
init_op = tf.global_variables_initializer()
|
103 |
+
# init_op2 = tf.global_variables_initializer()
|
104 |
+
# init_op3 = tf.global_variables_initializer()
|
105 |
+
sess.run(init_op)
|
106 |
+
# sess2.run(init_op2)
|
107 |
+
# sess3.run(init_op3)
|
108 |
+
with tf.name_scope('placeholder'):
|
109 |
+
input_photo = tf.placeholder(dtype=tf.float32,
|
110 |
+
shape=[1, None, None, 3],
|
111 |
+
name='photo')
|
112 |
+
input_photo_features = encoder(image=input_photo,
|
113 |
+
options={'gf_dim': 32},
|
114 |
+
reuse=False)
|
115 |
+
output_photo = decoder(features=input_photo_features,
|
116 |
+
options={'gf_dim': 32},
|
117 |
+
reuse=False)
|
118 |
+
saver = tf.train.Saver()
|
119 |
+
# saver2 = tf.train.Saver()
|
120 |
+
# saver3 = tf.train.Saver()
|
121 |
+
path = opts['styleCheckpoint']
|
122 |
+
#Getting the model name
|
123 |
+
model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][0]
|
124 |
+
if not os.getenv('MODELNAME'):
|
125 |
+
dtprint("CONFIG::MODELNAME env var non existent;using default:" + model_name)
|
126 |
+
else:
|
127 |
+
model_name = os.getenv('MODELNAME')
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
# #Getting the model2 name
|
132 |
+
# model2_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][1]
|
133 |
+
# if not os.getenv('MODEL2NAME'):
|
134 |
+
# dtprint("CONFIG::MODEL2NAME env var non existent;using default:" + model2_name)
|
135 |
+
# else:
|
136 |
+
# model2_name = os.getenv('MODEL2NAME')
|
137 |
+
|
138 |
+
|
139 |
+
##Getting the model3 name
|
140 |
+
# model3_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][2]
|
141 |
+
# if not os.getenv('MODEL3NAME'):
|
142 |
+
# dtprint("CONFIG::MODEL3NAME env var non existent;using default:" + model3_name)
|
143 |
+
# else:
|
144 |
+
# model3_name = os.getenv('MODEL3NAME')
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
checkpoint_dir = os.path.join(path, model_name, 'checkpoint_long')
|
149 |
+
#checkpoint2_dir = os.path.join(path, model2_name, 'checkpoint_long')
|
150 |
+
# checkpoint3_dir = os.path.join(path, model3_name, 'checkpoint_long')
|
151 |
+
print("-----------------------------------------")
|
152 |
+
print("modelname is : " + model_name)
|
153 |
+
#print("model2name is : " + model2_name)
|
154 |
+
# print("model3name is : " + model3_name)
|
155 |
+
print("checkpoint_dir is : " + checkpoint_dir)
|
156 |
+
|
157 |
+
print("Auto Brightness-Contrast Correction can be set as the x2 of this SingleOne Server")
|
158 |
+
|
159 |
+
|
160 |
+
#print("checkpoint2_dir is : " + checkpoint2_dir)
|
161 |
+
# print("checkpoint3_dir is : " + checkpoint3_dir)
|
162 |
+
print("-----------------------------------------")
|
163 |
+
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
|
164 |
+
#ckpt2 = tf.train.get_checkpoint_state(checkpoint2_dir)
|
165 |
+
# ckpt3 = tf.train.get_checkpoint_state(checkpoint3_dir)
|
166 |
+
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
|
167 |
+
#ckpt2_name = os.path.basename(ckpt2.model_checkpoint_path)
|
168 |
+
# ckpt3_name = os.path.basename(ckpt3.model_checkpoint_path)
|
169 |
+
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
|
170 |
+
#saver2.restore(sess2, os.path.join(checkpoint2_dir, ckpt2_name))
|
171 |
+
# saver3.restore(sess3, os.path.join(checkpoint3_dir, ckpt3_name))
|
172 |
+
m1 = dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
|
173 |
+
#m2 = dict(sess=sess2, input_photo=input_photo, output_photo=output_photo)
|
174 |
+
# m3 = dict(sess=sess3, input_photo=input_photo, output_photo=output_photo)
|
175 |
+
models = type('', (), {})()
|
176 |
+
models.m1 = m1
|
177 |
+
#models.m2 = m2
|
178 |
+
# models.m3 = m3
|
179 |
+
return models
|
180 |
+
|
181 |
+
|
182 |
+
#@STCGoal add number or text to specify resolution of the three pass
|
183 |
+
inputs={'contentImage': runway.image,'x1':number(default=1024,min=24,max=17000),'x2':number(default=0,min=-99,max=99)}
|
184 |
+
outputs={'stylizedImage': runway.image,'totaltime':number,'x1': number,'c1':number,'model1name':text}
|
185 |
+
|
186 |
+
@runway.command('stylize', inputs=inputs, outputs=outputs)
|
187 |
+
def stylize(models, inp):
|
188 |
+
start = time.time()
|
189 |
+
dtprint("Composing.1..")
|
190 |
+
model = models.m1
|
191 |
+
#model2 = models.m2
|
192 |
+
# model3 = models.m3
|
193 |
+
|
194 |
+
#Getting our names back (even though I think we dont need)
|
195 |
+
#@STCIssue BUGGED
|
196 |
+
# m1name=models.m1.name
|
197 |
+
# m2name=models.m2.name
|
198 |
+
# m3name=models.m3.name
|
199 |
+
|
200 |
+
#get size from inputs rather than env
|
201 |
+
x1 = inp['x1']
|
202 |
+
c1 = inp['x2']
|
203 |
+
# x3 = inp['x3']
|
204 |
+
if c1 > 99:
|
205 |
+
ci = abcdefault
|
206 |
+
|
207 |
+
|
208 |
+
#
|
209 |
+
img = inp['contentImage']
|
210 |
+
img = np.array(img)
|
211 |
+
img = img / 127.5 - 1.
|
212 |
+
|
213 |
+
#@a Pass 1 RESIZE to 1368px the smaller side
|
214 |
+
image_size=pass1_image_size
|
215 |
+
image_size=x1
|
216 |
+
img_shape = img.shape[:2]
|
217 |
+
alpha = float(image_size) / float(min(img_shape))
|
218 |
+
dtprint ("DEBUG::content.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
|
219 |
+
|
220 |
+
try:
|
221 |
+
img = scipy.misc.imresize(img, size=alpha)
|
222 |
+
except:
|
223 |
+
pass
|
224 |
+
|
225 |
+
|
226 |
+
img = np.expand_dims(img, axis=0)
|
227 |
+
#@a INFERENCE PASS 1
|
228 |
+
dtprint("INFO:Pass1 inference starting")
|
229 |
+
img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
|
230 |
+
dtprint("INFO:Pass1 inference done")
|
231 |
+
#
|
232 |
+
img = (img + 1.) * 127.5
|
233 |
+
img = img.astype('uint8')
|
234 |
+
img = img[0]
|
235 |
+
#dtprint("INFO:Upresing Pass1 for Pass 2 (STARTING) ")
|
236 |
+
|
237 |
+
#@a Pass 2 RESIZE to 1024px the smaller side
|
238 |
+
#image_size=pass2_image_size
|
239 |
+
#image_size=x2
|
240 |
+
#img_shape = img.shape[:2]
|
241 |
+
|
242 |
+
|
243 |
+
#alpha = float(image_size) / float(min(img_shape))
|
244 |
+
#dtprint ("DEBUG::pass1.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
|
245 |
+
|
246 |
+
#img = scipy.misc.imresize(img, size=alpha)
|
247 |
+
#dtprint("INFO:Upresing Pass1 (DONE) ")
|
248 |
+
|
249 |
+
#Iteration 2
|
250 |
+
#img = np.array(img)
|
251 |
+
#img = img / 127.5 - 1.
|
252 |
+
#img = np.expand_dims(img, axis=0)
|
253 |
+
#@a INFERENCE PASS 2 using the same model
|
254 |
+
#dtprint("INFO:Pass2 inference (STARTING)")
|
255 |
+
#img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
|
256 |
+
#dtprint("INFO:Pass2 inference (DONE)")
|
257 |
+
#img = (img + 1.) * 127.5
|
258 |
+
#img = img.astype('uint8')
|
259 |
+
#img = img[0]
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
# #pass3
|
264 |
+
|
265 |
+
# #@a Pass 3 RESIZE to 2048px the smaller side
|
266 |
+
# image_size=pass3_image_size
|
267 |
+
# image_size=x3
|
268 |
+
# img_shape = img.shape[:2]
|
269 |
+
|
270 |
+
|
271 |
+
# alpha = float(image_size) / float(min(img_shape))
|
272 |
+
# dtprint ("DEBUG::pass2.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
|
273 |
+
|
274 |
+
# img = scipy.misc.imresize(img, size=alpha)
|
275 |
+
# dtprint("INFO:Upresing Pass2 (DONE) ")
|
276 |
+
|
277 |
+
# #Iteration 3
|
278 |
+
# img = np.array(img)
|
279 |
+
# img = img / 127.5 - 1.
|
280 |
+
# img = np.expand_dims(img, axis=0)
|
281 |
+
# #@a INFERENCE PASS 3
|
282 |
+
# dtprint("INFO:Pass3 inference (STARTING)")
|
283 |
+
# img = model3['sess'].run(model3['output_photo'], feed_dict={model3['input_photo']: img})
|
284 |
+
# dtprint("INFO:Pass3 inference (DONE)")
|
285 |
+
# img = (img + 1.) * 127.5
|
286 |
+
# img = img.astype('uint8')
|
287 |
+
# img = img[0]
|
288 |
+
# #pass3
|
289 |
+
|
290 |
+
#dtprint("INFO:Composing done")
|
291 |
+
print('autoabc value:')
|
292 |
+
print(c1)
|
293 |
+
if c1 != 0 :
|
294 |
+
print('Auto Brightening images...')
|
295 |
+
img = img, alpha2, beta = automatic_brightness_and_contrast(img,c1)
|
296 |
+
|
297 |
+
stop = time.time()
|
298 |
+
totaltime = stop - start
|
299 |
+
print("The time of the run:", totaltime)
|
300 |
+
res2 = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1)
|
301 |
+
return res2
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
def dtprint(msg):
|
306 |
+
dttag=getdttag()
|
307 |
+
print(dttag + "::" + msg )
|
308 |
+
|
309 |
+
def getdttag():
|
310 |
+
# datetime object containing current date and time
|
311 |
+
now = datetime.now()
|
312 |
+
|
313 |
+
# dd/mm/YY H:M:S
|
314 |
+
# dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
|
315 |
+
return now.strftime("%H:%M:%S")
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
# Automatic brightness and contrast optimization with optional histogram clipping
|
320 |
+
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
|
321 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
322 |
+
|
323 |
+
# Calculate grayscale histogram
|
324 |
+
hist = cv2.calcHist([gray],[0],None,[256],[0,256])
|
325 |
+
hist_size = len(hist)
|
326 |
+
|
327 |
+
# Calculate cumulative distribution from the histogram
|
328 |
+
accumulator = []
|
329 |
+
accumulator.append(float(hist[0]))
|
330 |
+
for index in range(1, hist_size):
|
331 |
+
accumulator.append(accumulator[index -1] + float(hist[index]))
|
332 |
+
|
333 |
+
# Locate points to clip
|
334 |
+
maximum = accumulator[-1]
|
335 |
+
clip_hist_percent *= (maximum/100.0)
|
336 |
+
clip_hist_percent /= 2.0
|
337 |
+
|
338 |
+
# Locate left cut
|
339 |
+
minimum_gray = 0
|
340 |
+
while accumulator[minimum_gray] < clip_hist_percent:
|
341 |
+
minimum_gray += 1
|
342 |
+
|
343 |
+
# Locate right cut
|
344 |
+
maximum_gray = hist_size -1
|
345 |
+
while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
|
346 |
+
maximum_gray -= 1
|
347 |
+
|
348 |
+
# Calculate alpha and beta values
|
349 |
+
alpha = 255 / (maximum_gray - minimum_gray)
|
350 |
+
beta = -minimum_gray * alpha
|
351 |
+
|
352 |
+
'''
|
353 |
+
# Calculate new histogram with desired range and show histogram
|
354 |
+
new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
|
355 |
+
plt.plot(hist)
|
356 |
+
plt.plot(new_hist)
|
357 |
+
plt.xlim([0,256])
|
358 |
+
plt.show()
|
359 |
+
'''
|
360 |
+
|
361 |
+
auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
|
362 |
+
return (auto_result, alpha, beta)
|
363 |
+
|
364 |
+
|
365 |
+
if __name__ == '__main__':
|
366 |
+
#print('External Service port is:' +os.environ.get('SPORT'))
|
367 |
+
os.environ["RW_PORT"] = "7860"
|
368 |
+
runway.run()
|
requirements.txt
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==0.9.0
|
2 |
+
asn1crypto==0.22.0
|
3 |
+
astor==0.8.1
|
4 |
+
backports.weakref==1.0.post1
|
5 |
+
Brotli==1.0.7
|
6 |
+
certifi==2019.11.28
|
7 |
+
cffi==1.10.0
|
8 |
+
chardet==3.0.4
|
9 |
+
click==7.1.2
|
10 |
+
colorcet==2.0.2
|
11 |
+
conda==4.8.3
|
12 |
+
conda-package-handling==1.6.0
|
13 |
+
cryptography==1.8.1
|
14 |
+
enum34==1.1.6
|
15 |
+
Flask==1.1.2
|
16 |
+
Flask-Compress==1.5.0
|
17 |
+
Flask-Cors==3.0.8
|
18 |
+
Flask-Sockets==0.2.1
|
19 |
+
funcsigs==1.0.2
|
20 |
+
functools32==3.2.3.post2
|
21 |
+
futures==3.3.0
|
22 |
+
gast==0.2.2
|
23 |
+
gevent==20.6.2
|
24 |
+
gevent-websocket==0.10.1
|
25 |
+
google-pasta==0.2.0
|
26 |
+
greenlet==0.4.16
|
27 |
+
grpcio==1.30.0
|
28 |
+
h5py==2.10.0
|
29 |
+
idna==2.6
|
30 |
+
ipaddress==1.0.18
|
31 |
+
itsdangerous==1.1.0
|
32 |
+
Jinja2==2.11.2
|
33 |
+
Keras-Applications==1.0.8
|
34 |
+
Keras-Preprocessing==1.1.2
|
35 |
+
Markdown==3.1.1
|
36 |
+
MarkupSafe==1.1.1
|
37 |
+
mock==3.0.5
|
38 |
+
numpy==1.15.0
|
39 |
+
opencv-python==4.2.0.32
|
40 |
+
opt-einsum==2.3.2
|
41 |
+
packaging==16.8
|
42 |
+
param==1.9.3
|
43 |
+
Pillow==6.2.2
|
44 |
+
protobuf==3.12.2
|
45 |
+
pycosat==0.6.3
|
46 |
+
pycparser==2.18
|
47 |
+
pycrypto==2.6.1
|
48 |
+
pyct==0.4.6
|
49 |
+
pyOpenSSL==17.0.0
|
50 |
+
pyparsing==2.2.0
|
51 |
+
PySocks==1.7.1
|
52 |
+
PyYAML==3.11
|
53 |
+
requests @ file:///tmp/build/80754af9/requests_1592841827918/work
|
54 |
+
runway-model-runner @ file:///root/runner
|
55 |
+
runway-python==0.5.9
|
56 |
+
scipy==1.1.0
|
57 |
+
six==1.15.0
|
58 |
+
tensorboard==1.15.0
|
59 |
+
tensorflow==1.15.0
|
60 |
+
tensorflow-estimator==1.15.1
|
61 |
+
termcolor==1.1.0
|
62 |
+
tqdm @ file:///tmp/build/80754af9/tqdm_1593446365756/work
|
63 |
+
Unidecode==1.1.1
|
64 |
+
urllib3==1.25.7
|
65 |
+
Werkzeug==1.0.1
|
66 |
+
wget==3.2
|
67 |
+
wrapt==1.12.1
|
68 |
+
zope.event==4.4
|
69 |
+
zope.interface==5.1.0
|
server.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from module import encoder, decoder
|
5 |
+
from glob import glob
|
6 |
+
import runway
|
7 |
+
|
8 |
+
|
9 |
+
@runway.setup(options={"styleCheckpoint": runway.file(is_directory=True)})
|
10 |
+
def setup(opts):
|
11 |
+
sess = tf.Session()
|
12 |
+
init_op = tf.global_variables_initializer()
|
13 |
+
sess.run(init_op)
|
14 |
+
with tf.name_scope("placeholder"):
|
15 |
+
input_photo = tf.placeholder(
|
16 |
+
dtype=tf.float32, shape=[1, None, None, 3], name="photo"
|
17 |
+
)
|
18 |
+
input_photo_features = encoder(
|
19 |
+
image=input_photo, options={"gf_dim": 32}, reuse=False
|
20 |
+
)
|
21 |
+
output_photo = decoder(
|
22 |
+
features=input_photo_features, options={"gf_dim": 32}, reuse=False
|
23 |
+
)
|
24 |
+
saver = tf.train.Saver()
|
25 |
+
path = opts["styleCheckpoint"]
|
26 |
+
model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][
|
27 |
+
0
|
28 |
+
]
|
29 |
+
checkpoint_dir = os.path.join(path, model_name, "checkpoint_long")
|
30 |
+
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
|
31 |
+
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
|
32 |
+
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
|
33 |
+
return dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
|
34 |
+
|
35 |
+
|
36 |
+
@runway.command(
|
37 |
+
"stylize",
|
38 |
+
inputs={"contentImage": runway.image},
|
39 |
+
outputs={"stylizedImage": runway.image},
|
40 |
+
)
|
41 |
+
def stylize(model, inp):
|
42 |
+
img = inp["contentImage"]
|
43 |
+
img = np.array(img)
|
44 |
+
img = img / 127.5 - 1.0
|
45 |
+
img = np.expand_dims(img, axis=0)
|
46 |
+
img = model["sess"].run(
|
47 |
+
model["output_photo"], feed_dict={model["input_photo"]: img}
|
48 |
+
)
|
49 |
+
img = (img + 1.0) * 127.5
|
50 |
+
img = img.astype("uint8")
|
51 |
+
img = img[0]
|
52 |
+
return dict(stylizedImage=img)
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
#print("External Service port is:" + os.environ.get("SPORT",7860))
|
57 |
+
#set env var: RW_PORT=7860
|
58 |
+
os.environ["RW_PORT"] = "7860"
|
59 |
+
runway.run()
|