Spaces:
Runtime error
Runtime error
File size: 12,393 Bytes
31532c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import re
import copy
import time
import logging
import subprocess
from uuid import uuid4
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import spaces
os.environ['QT_QPA_PLATFORM']='offscreen'
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_flash_sdp(False)
# log_dir
os.makedirs("logs", exist_ok=True)
os.makedirs("tmp", exist_ok=True)
logging.basicConfig(
filename=f'logs/chatmusician_server_{time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(time.time()))}.log',
level=logging.WARNING,
format='%(asctime)s [%(levelname)s]: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
MODEL_PATH = 'm-a-p/ChatMusician'
def get_uuid():
return str(uuid4())
# todo
def log_conversation(conversation_id, history, messages, response, generate_kwargs):
timestamp = time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(time.time()))
data = {
"conversation_id": conversation_id,
"timestamp": timestamp,
"history": history,
"messages": messages,
"response": response,
"generate_kwargs": generate_kwargs,
}
logging.critical(f"{data}")
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def convert_history_to_text(task_history):
history_cp = copy.deepcopy(task_history)
text = "".join(
[f"Human: {item[0]} </s> Assistant: {item[1]} </s> " for item in history_cp[:-1] if item[0]]
)
text += f"Human: {history_cp[-1][0]} </s> Assistant: "
return text
# todo
def postprocess_abc(text, conversation_id):
os.makedirs(f"tmp/{conversation_id}", exist_ok=True)
abc_pattern = r'(X:\d+\n(?:[^\n]*\n)+)'
abc_notation = re.findall(abc_pattern, text+'\n')
print(f'extract abc block: {abc_notation}')
if abc_notation:
ts = time.time()
# Write the ABC text to a temporary file
tmp_abc = f"tmp/{conversation_id}/{ts}.abc"
with open(tmp_abc, "w") as abc_file:
abc_file.write(abc_notation[0])
# Convert abc notation to midi
tmp_midi = f'tmp/{conversation_id}/{ts}.mid'
subprocess.run(["abc2midi", str(tmp_abc), "-o", tmp_midi])
# Convert abc notation to SVG
svg_file = f'tmp/{conversation_id}/{ts}.svg'
audio_file = f'tmp/{conversation_id}/{ts}.mp3'
subprocess.run(["musescore", "-o", svg_file, tmp_midi], capture_output=True, text=True)
subprocess.run(["musescore","-o", audio_file, tmp_midi])
return svg_file.replace(".svg", "-1.svg"), audio_file
else:
return None, None
def _launch_demo(model, tokenizer):
@spaces.GPU
def predict(_chatbot, task_history, temperature, top_p, top_k, repetition_penalty, conversation_id):
query = task_history[-1][0]
print("User: " + _parse_text(query))
# model generation
messages = convert_history_to_text(task_history)
inputs = tokenizer(messages, return_tensors="pt", add_special_tokens=False)
generation_config = GenerationConfig(
temperature=float(temperature),
top_p = float(top_p),
top_k = top_k,
repetition_penalty = float(repetition_penalty),
max_new_tokens=1536,
min_new_tokens=5,
do_sample=True,
num_beams=1,
num_return_sequences=1
)
response = model.generate(
input_ids=inputs["input_ids"].to(model.device),
attention_mask=inputs['attention_mask'].to(model.device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
generation_config=generation_config,
)
response = tokenizer.decode(response[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
_chatbot[-1] = (_parse_text(query), _parse_text(response))
task_history[-1] = (_parse_text(query), response)
# log
log_conversation(conversation_id, task_history, messages, _chatbot[-1][1], generation_config.to_json_string())
return _chatbot, task_history
def process_and_render_abc(_chatbot, task_history, conversation_id):
svg_file, wav_file = None, None
try:
svg_file, wav_file = postprocess_abc(task_history[-1][1], conversation_id)
except Exception as e:
logging.error(e)
if svg_file and wav_file:
if os.path.exists(svg_file) and os.path.exists(wav_file):
logging.critical(f"generate: svg: {svg_file} wav: {wav_file}")
print(f"generate:\n{svg_file}\n{wav_file}")
_chatbot.append((None, (str(wav_file),)))
_chatbot.append((None, (str(svg_file),)))
else:
logging.error(f"fail to convert: {svg_file[:-4]}.musicxml")
return _chatbot
def add_text(history, task_history, text):
history = history + [(_parse_text(text), None)]
task_history = task_history + [(text, None)]
return history, task_history, ""
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
with gr.Blocks() as demo:
conversation_id = gr.State(get_uuid)
gr.Markdown(
"""<h1><center>Chat Musician</center></h1>"""
)
gr.Markdown("""\
<center><font size=4><a href="https://ezmonyi.github.io/ChatMusician/">π DemoPage</a>  |
 <a href="https://github.com/hf-lin/ChatMusician">π» Github</a>  |
 <a href="http://arxiv.org/abs/2402.16153">π arXiv</a>  |
 <a href="https://huggingface.co/datasets/m-a-p/MusicTheoryBench">π€ Benchmark</a>  |
 <a href="https://huggingface.co/datasets/m-a-p/MusicPile">π€ Pretrain Dataset</a>  |
 <a href="https://huggingface.co/datasets/m-a-p/MusicPile-sft">π€ SFT Dataset</a></center>""")
gr.Markdown("""\
<center><font size=4>π‘Note: The music clips on this page is auto-converted using musescore2 which may not be perfect,
and we recommend using better software for analysis.</center>""")
chatbot = gr.Chatbot(label='ChatMusician', elem_classes="control-height", height=750)
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
submit_btn = gr.Button("π Submit (ει)")
empty_bin = gr.Button("π§Ή Clear History (ζΈ
ι€εε²)")
# regen_btn = gr.Button("π€οΈ Regenerate (ιθ―)")
gr.Examples(
examples=[
["Create music by following the alphabetic representation of the assigned musical structure and the given motif.\n'ABCA';X:1\nL:1/16\nM:2/4\nK:A\n['E2GB d2c2 B2A2', 'D2 C2E2 A2c2']"],
["Develop a melody using the given chord pattern.\n'C', 'C', 'G/D', 'D', 'G', 'C', 'G', 'G', 'C', 'C', 'F', 'C/G', 'G7', 'C'"],
["Create sheet music in ABC notation from the provided text.\nAlternative title: \nThe Legacy\nKey: G\nMeter: 6/8\nNote Length: 1/8\nRhythm: Jig\nOrigin: English\nTranscription: John Chambers"],
],
inputs=query
)
with gr.Row():
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column():
with gr.Row():
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=10.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
with gr.Column():
with gr.Row():
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.9,
minimum=0.0,
maximum=1,
step=0.01,
interactive=True,
info=(
"Sample from the smallest possible set of tokens whose cumulative probability "
"exceeds top_p. Set to 1 to disable and sample from all tokens."
),
)
with gr.Column():
with gr.Row():
top_k = gr.Slider(
label="Top-k",
value=40,
minimum=0.0,
maximum=200,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens β 0 to disable and sample from all tokens.",
)
with gr.Column():
with gr.Row():
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.1,
minimum=1.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Penalize repetition β 1.0 to disable.",
)
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history], queue=False).then(
predict,
[chatbot, task_history, temperature, top_p, top_k, repetition_penalty, conversation_id],
[chatbot, task_history],
show_progress=True,
queue=True
).then(process_and_render_abc, [chatbot, task_history, conversation_id], [chatbot])
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
gr.Markdown(
"Disclaimer: The model can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. The model was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
return demo
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map='cuda',
torch_dtype=torch.float16
).eval()
model.generation_config = GenerationConfig.from_pretrained(
MODEL_PATH
)
app = _launch_demo(model, tokenizer)
app.queue().launch()
|