|
import gradio as gr |
|
import torch |
|
import torchvision |
|
import numpy as np |
|
from PIL import Image |
|
|
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) |
|
|
|
def inference(im): |
|
results = model(im) |
|
|
|
results.render() |
|
|
|
return Image.fromarray(results.imgs[0]) |
|
|
|
|
|
inputs = gr.inputs.Image(type='pil', label="Original Image") |
|
outputs = gr.outputs.Image(type="pil", label="Output Image") |
|
|
|
title = "Yolo demo" |
|
description = "Demo of Yolo for EAAI" |
|
|
|
gr.Interface(inference, inputs, outputs, title=title, description=description).launch(enable_queue=True) |