import gradio as gr import torch import torchvision import numpy as np from PIL import Image model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) def inference(im): results = model(im) results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.ims[0]) inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "Yolo demo" description = "Demo of Yolo for EAAI" gr.Interface(inference, inputs, outputs, title=title, description=description).launch(enable_queue=True)