Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler | |
from PIL import Image | |
import PIL | |
import torch | |
import numpy as np | |
model_path = "Linaqruf/anything-v3.0" | |
vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae") | |
print(f"vae loaded from {model_path}") | |
def snap(w, h, d=64, area=640 * 640): | |
s = min(1.0, (area / w / h) ** 0.5) | |
err = lambda a, b: 1 - min(a, b) / max(a, b) | |
sw, sh = map(lambda x: int((x * s) // d * d), (w, h)) | |
return min( | |
( | |
(ww, hh) | |
for ww, hh in [(sw, sh), (sw, sh + d), (sw + d, sh), (sw + d, sh + d)] | |
if ww * hh <= area | |
), | |
key=lambda wh: err(w / h, wh[0] / wh[1]), | |
) | |
def center_crop_image(image, hx, wx): | |
# Get the original image dimensions (HxW) | |
original_width, original_height = image.size | |
# Calculate the coordinates for center cropping | |
if original_width / original_height > wx / hx: | |
ww = original_height * wx / hx | |
left, right, top, bottom = ( | |
(original_width - ww) / 2, | |
(original_width + ww) / 2, | |
0, | |
original_height, | |
) | |
else: | |
hh = original_width * hx / wx | |
left, right, top, bottom = ( | |
0, | |
original_width, | |
(original_height - hh) / 2, | |
(original_height + hh) / 2, | |
) | |
# Crop the image | |
cropped_image = image.crop((left, top, right, bottom)) | |
# Resize the cropped image to the target size (hxw) | |
cropped_image = cropped_image.resize((wx, hx), Image.Resampling.LANCZOS) | |
return cropped_image | |
def preprocess(image): | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i)[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
if images.shape[-1] == 1: | |
# special case for grayscale (single channel) images | |
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] | |
else: | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def postprocess_image(sample: torch.FloatTensor, output_type: str = "pil"): | |
if output_type not in ["pt", "np", "pil"]: | |
raise ValueError( | |
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']" | |
) | |
# Equivalent to diffusers.VaeImageProcessor.denormalize | |
sample = (sample / 2 + 0.5).clamp(0, 1) | |
if output_type == "pt": | |
return sample | |
# Equivalent to diffusers.VaeImageProcessor.pt_to_numpy | |
sample = sample.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "np": | |
return sample | |
# Output_type must be 'pil' | |
sample = numpy_to_pil(sample) | |
return sample | |
def vae_roundtrip(image, max_resolution: int): | |
w, h = image.size | |
ww, hh = snap(w, h, area=max_resolution**2) | |
cropped = center_crop_image(image, hh, ww) | |
image = preprocess(cropped) | |
with torch.no_grad(): | |
dist = vae.encode(image)[0] | |
res = vae.decode(dist.mean, return_dict=False)[0] | |
return cropped, postprocess_image(res)[0] | |
iface = gr.Interface( | |
fn=vae_roundtrip, | |
inputs=[gr.Image(type="pil"), gr.Slider(384, 1024, step=64, value=640)], | |
outputs=[gr.Image(label="center cropped"), gr.Image(label="after roundtrip")], | |
allow_flagging="never", | |
) | |
iface.launch() | |