Spaces:
Runtime error
Runtime error
File size: 2,714 Bytes
fc97f19 ebb3fe8 84d9d62 fc97f19 ebb3fe8 fc97f19 ebb3fe8 1de2927 fc97f19 84d9d62 ebb3fe8 84d9d62 ebb3fe8 84d9d62 ebb3fe8 84d9d62 ebb3fe8 84d9d62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
from transformers import pipeline
import pandas as pd
import os
import azure.cognitiveservices.speech as speechsdk
import base64
import torch
dialects = {"Palestinian/Jordanian": "P", "Syrian": "S", "Lebanese": "L", "Egyptian": "E"}
pipeline = pipeline(task="translation", model="guymorlan/English2Dialect")
st.title("English to Levantine Arabic")
num_translations = st.sidebar.selectbox("Number of Translations Per Dialect:", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], index=0)
input_text = st.text_input("Enter English text:")
@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda parameter: parameter.data.numpy()})
def get_translation(input_text, num_translations):
inputs = [f"{val} {input_text}" for val in dialects.values()]
result = pipeline(inputs, max_length=1024, num_return_sequences=num_translations, num_beams=max(num_translations, 5))
return result
if input_text:
result = get_translation(input_text, num_translations)
#df = pd.DataFrame({"Dialect": [x for x in dialects.keys()],
# "Translation": [x["translation_text"] for x in result]})
for i in range(len(result)):
# play = st.button("Play Audio (Machine Generated)")
st.markdown(f"<div style='font-size:24px'><b>{list(dialects.keys())[i]}:</b></div>", unsafe_allow_html=True)
if i == 0:
if num_translations > 1:
get = result[0][0]["translation_text"]
else:
get = result[0]["translation_text"]
speech_config = speechsdk.SpeechConfig(subscription=os.environ.get('SPEECH_KEY'), region=os.environ.get('SPEECH_REGION'))
audio_config = speechsdk.audio.AudioOutputConfig(filename=f"{input_text}.wav")
speech_config.speech_synthesis_voice_name='ar-SY-AmanyNeural'
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(get).get()
audio_file = open(f"{input_text}.wav", "rb")
audio_bytes = audio_file.read()
#autoplay_audio(f"{input_text}.wav")
st.audio(audio_bytes, format="audio/mp3", start_time=0)
if num_translations > 1:
for j in range(num_translations):
st.markdown(f"<div style='font-size:24px; text-align:right; direction:rtl;'>{result[i][j]['translation_text']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div style='font-size:24px; text-align:right; direction:rtl;'>{result[i]['translation_text']}</div>", unsafe_allow_html=True)
st.markdown("<br>", unsafe_allow_html=True)
|